Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1962 Jan;48(1):81–94. doi: 10.1073/pnas.48.1.81

DEOXYRIBONUCLEIC ACID-DIRECTED SYNTHESIS OF RIBONUCLEIC ACID BY AN ENZYME FROM ESCHERICHIA COLI*

Michael Chamberlin 1,, Paul Berg 1
PMCID: PMC285509  PMID: 13877961

Full text

PDF
81

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURMA D. P., KROGER H., OCHOA S., WARNER R. C., WEILL J. D. Further studies on deoxyribonucleic acid-dependent enzymatic synthesis of ribonucleic acid. Proc Natl Acad Sci U S A. 1961 Jun 15;47:749–752. doi: 10.1073/pnas.47.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Canellakis E. S., Herbert E. STUDIES ON S-RNA SYNTHESIS, I. PURIFICATION AND GENERAL CHARACTERISTICS OF THE RNA-ENZYME COMPLEX. Proc Natl Acad Sci U S A. 1960 Feb;46(2):170–178. doi: 10.1073/pnas.46.2.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EPHRATI-ELIZUR E., SRINIVASAN P. R., ZAMENHOF S. Genetic analysis, by means of transformation, of histidine linkage groups in Bacillus subtilis. Proc Natl Acad Sci U S A. 1961 Jan 15;47:56–63. doi: 10.1073/pnas.47.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FINCHAM J. R. The biochemistry of genetic factors. Annu Rev Biochem. 1959;28:343–364. doi: 10.1146/annurev.bi.28.070159.002015. [DOI] [PubMed] [Google Scholar]
  5. FURTH J. J., HURWITZ J., GOLDMANN M. The directing role of DNA in RNA synthesis. Biochem Biophys Res Commun. 1961 Apr 7;4:362–367. doi: 10.1016/0006-291x(61)90219-4. [DOI] [PubMed] [Google Scholar]
  6. GEIDUSCHEK E. P., NAKAMOTO T., WEISS S. B. The enzymatic synthesis of RNA: complementary interaction with DNA. Proc Natl Acad Sci U S A. 1961 Sep 15;47:1405–1415. doi: 10.1073/pnas.47.9.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HALL B. D., SPIEGELMAN S. Sequence complementarity of T2-DNA and T2-specific RNA. Proc Natl Acad Sci U S A. 1961 Feb 15;47:137–163. doi: 10.1073/pnas.47.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HUANG R. C., MAHESHWARI N., BONNER J. Enzymatic synthesis of RNA. Biochem Biophys Res Commun. 1960 Dec;3:689–694. doi: 10.1016/0006-291x(60)90088-7. [DOI] [PubMed] [Google Scholar]
  9. HURWITZ J. The enzymatic incorporation of ribonucleotides into polydeoxynucletide material. J Biol Chem. 1959 Sep;234:2351–2358. [PubMed] [Google Scholar]
  10. Hecht L. I., Stephenson M. L., Zamecnik P. C. BINDING OF AMINO ACIDS TO THE END GROUP OF A SOLUBLE RIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1959 Apr;45(4):505–518. doi: 10.1073/pnas.45.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. INGRAM V. M. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. 1956 Oct 13;178(4537):792–794. doi: 10.1038/178792a0. [DOI] [PubMed] [Google Scholar]
  12. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  13. JOSSE J., KAISER A. D., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J Biol Chem. 1961 Mar;236:864–875. [PubMed] [Google Scholar]
  14. KAISER A. D., HOGNESS D. S. The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol. 1960 Dec;2:392–415. doi: 10.1016/s0022-2836(60)80050-2. [DOI] [PubMed] [Google Scholar]
  15. LEHMAN I. R., BESSMAN M. J., SIMMS E. S., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem. 1958 Jul;233(1):163–170. [PubMed] [Google Scholar]
  16. LEHMAN I. R. Enzymatic synthesis of desoxyribonucleic acid. Ann N Y Acad Sci. 1959 Sep 4;81:745–756. doi: 10.1111/j.1749-6632.1959.tb49356.x. [DOI] [PubMed] [Google Scholar]
  17. LEHMAN I. R. The deoxyribonucleases of Escherichia coli. I. Purification and properties of a phosphodiesterase. J Biol Chem. 1960 May;235:1479–1487. [PubMed] [Google Scholar]
  18. LITTAUER U. Z., KORNBERG A. Reversible synthesis of polyribonucleotides with an enzyme from Escherichia coli. J Biol Chem. 1957 Jun;226(2):1077–1092. [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. MAGASANIK B., VISCHER E., DONIGER R., ELSON D., CHARGAFF E. The separation and estimation of ribonucleotides in minute quantities. J Biol Chem. 1950 Sep;186(1):37–50. [PubMed] [Google Scholar]
  21. MARKHAM R., SMITH J. D. The structure of ribonucleic acid. I. Cyclic nucleotides produced by ribonuclease and by alkaline hydrolysis. Biochem J. 1952 Dec;52(4):552–557. doi: 10.1042/bj0520552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. OCHOA S., BURMA D. P., KROGER H., WEILL J. D. Deoxyribonucleic acid-dependent incorporation of nucleotides from nucleoside triphosphates into ribonucleic acid. Proc Natl Acad Sci U S A. 1961 May 15;47:670–679. doi: 10.1073/pnas.47.5.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. OFENGAND E. J., DIECKMANN M., BERG P. The enzymic synthesis of amino acyl derivatives of ribonucleic acid. III. Isolation of amino acid-acceptor ribonucleic acids from Escherichia coli. J Biol Chem. 1961 Jun;236:1741–1747. [PubMed] [Google Scholar]
  24. Rich A. A HYBRID HELIX CONTAINING BOTH DEOXYRIBOSE AND RIBOSE POLYNUCLEOTIDES AND ITS RELATION TO THE TRANSFER OF INFORMATION BETWEEN THE NUCLEIC ACIDS. Proc Natl Acad Sci U S A. 1960 Aug;46(8):1044–1053. doi: 10.1073/pnas.46.8.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. VOLKIN E., ASTRACHAN L. Phosphorus incorporation in Escherichia coli ribo-nucleic acid after infection with bacteriophage T2. Virology. 1956 Apr;2(2):149–161. doi: 10.1016/0042-6822(56)90016-2. [DOI] [PubMed] [Google Scholar]
  26. Volkin E. THE FUNCTION OF RNA IN T2-INFECTED BACTERIA. Proc Natl Acad Sci U S A. 1960 Oct;46(10):1336–1349. doi: 10.1073/pnas.46.10.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. WIESMEYER H., COHN M. The characterization of the pathway of maltose utilization by Escherichia coli. I. Purification and physical chemical properties of the enzyme amylomaltase. Biochim Biophys Acta. 1960 Apr 22;39:417–426. doi: 10.1016/0006-3002(60)90194-3. [DOI] [PubMed] [Google Scholar]
  28. WYATT G. R., COHEN S. S. The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem J. 1953 Dec;55(5):774–782. doi: 10.1042/bj0550774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weiss S. B. ENZYMATIC INCORPORATION OF RIBONUCLEOSIDE TRIPHOSPHATES INTO THE INTERPOLYNUCLEOTIDE LINKAGES OF RIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1960 Aug;46(8):1020–1030. doi: 10.1073/pnas.46.8.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weiss S. B., Nakamoto T. THE ENZYMATIC SYNTHESIS OF RNA: NEAREST-NEIGHBOR BASE FREQUENCIES. Proc Natl Acad Sci U S A. 1961 Sep;47(9):1400–1405. doi: 10.1073/pnas.47.9.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. YANOFSKY C., LAWRENCE P. S. Gene action. Annu Rev Microbiol. 1960;14:311–340. doi: 10.1146/annurev.mi.14.100160.001523. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES