Full text
PDF![94](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867d/285510/ee1010c8853d/pnas00224-0111.png)
![95](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867d/285510/e3c71373e164/pnas00224-0112.png)
![96](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867d/285510/8ce0f332aeba/pnas00224-0113.png)
![97](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867d/285510/f3c631086e1f/pnas00224-0114.png)
![98](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867d/285510/61e6e75aab67/pnas00224-0115.png)
![99](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867d/285510/4aefe69a15f8/pnas00224-0116.png)
![100](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867d/285510/0e0eb439de9c/pnas00224-0117.png)
![101](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867d/285510/99c0263a49c7/pnas00224-0118.png)
![102](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867d/285510/378d1c55620e/pnas00224-0119.png)
![103](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867d/285510/32ed238c994e/pnas00224-0120.png)
![104](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/867d/285510/5e5ae73ebb99/pnas00224-0121.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURMA D. P., KROGER H., OCHOA S., WARNER R. C., WEILL J. D. Further studies on deoxyribonucleic acid-dependent enzymatic synthesis of ribonucleic acid. Proc Natl Acad Sci U S A. 1961 Jun 15;47:749–752. doi: 10.1073/pnas.47.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doty P., Marmur J., Eigner J., Schildkraut C. STRAND SEPARATION AND SPECIFIC RECOMBINATION IN DEOXYRIBONUCLEIC ACIDS: PHYSICAL CHEMICAL STUDIES. Proc Natl Acad Sci U S A. 1960 Apr;46(4):461–476. doi: 10.1073/pnas.46.4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FURTH J. J., HURWITZ J., GOLDMANN M. The directing role of DNA in RNA synthesis. Specificity of the deoxyadenylate deoxythymidvlate copolymer as a primer. Biochem Biophys Res Commun. 1961 Apr 28;4:431–435. doi: 10.1016/0006-291x(61)90303-5. [DOI] [PubMed] [Google Scholar]
- FURTH J. J., HURWITZ J., GOLDMANN M. The directing role of DNA in RNA synthesis. Biochem Biophys Res Commun. 1961 Apr 7;4:362–367. doi: 10.1016/0006-291x(61)90219-4. [DOI] [PubMed] [Google Scholar]
- GEIDUSCHEK E. P., NAKAMOTO T., WEISS S. B. The enzymatic synthesis of RNA: complementary interaction with DNA. Proc Natl Acad Sci U S A. 1961 Sep 15;47:1405–1415. doi: 10.1073/pnas.47.9.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GROS F., HIATT H., GILBERT W., KURLAND C. G., RISEBROUGH R. W., WATSON J. D. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature. 1961 May 13;190:581–585. doi: 10.1038/190581a0. [DOI] [PubMed] [Google Scholar]
- HAYASHI M., SPIEGELMAN S. The selective synthesis of informational RNA in bacteria. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1564–1580. doi: 10.1073/pnas.47.10.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
- LAMBORG M. R., ZAMECNIK P. C. Amino acid incorporation into protein by extracts of E. coli. Biochim Biophys Acta. 1960 Aug 12;42:206–211. doi: 10.1016/0006-3002(60)90782-4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MATTHAEI J. H., NIRENBERG M. W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NATHANS D., LIPMANN F. Amino acid transfer from aminoacyl-ribonucleic acids to protein on ribosomes of Escherichia coli. Proc Natl Acad Sci U S A. 1961 Apr 15;47:497–504. doi: 10.1073/pnas.47.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OFENGAND E. J., DIECKMANN M., BERG P. The enzymic synthesis of amino acyl derivatives of ribonucleic acid. III. Isolation of amino acid-acceptor ribonucleic acids from Escherichia coli. J Biol Chem. 1961 Jun;236:1741–1747. [PubMed] [Google Scholar]
- Preiss J., Berg P., Ofengand E. J., Bergmann F. H., Dieckmann M. THE CHEMICAL NATURE OF THE RNA-AMINO ACID COMPOUND FORMED BY AMINO ACID-ACTIVATING ENZYMES. Proc Natl Acad Sci U S A. 1959 Mar;45(3):319–328. doi: 10.1073/pnas.45.3.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tissieres A., Schlessinger D., Gros F. AMINO ACID INCORPORATION INTO PROTEINS BY ESCHERICHIA COLI RIBOSOMES. Proc Natl Acad Sci U S A. 1960 Nov;46(11):1450–1463. doi: 10.1073/pnas.46.11.1450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VOLKIN E., ASTRACHAN L. Phosphorus incorporation in Escherichia coli ribo-nucleic acid after infection with bacteriophage T2. Virology. 1956 Apr;2(2):149–161. doi: 10.1016/0042-6822(56)90016-2. [DOI] [PubMed] [Google Scholar]
- Volkin E. THE FUNCTION OF RNA IN T2-INFECTED BACTERIA. Proc Natl Acad Sci U S A. 1960 Oct;46(10):1336–1349. doi: 10.1073/pnas.46.10.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEISS S. B., NAKAMOTO T. On the participation of DNA in RNA biosynthesis. Proc Natl Acad Sci U S A. 1961 May 15;47:694–697. doi: 10.1073/pnas.47.5.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss S. B., Nakamoto T. THE ENZYMATIC SYNTHESIS OF RNA: NEAREST-NEIGHBOR BASE FREQUENCIES. Proc Natl Acad Sci U S A. 1961 Sep;47(9):1400–1405. doi: 10.1073/pnas.47.9.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ycas M., Vincent W. S. A RIBONUCLEIC ACID FRACTION FROM YEAST RELATED IN COMPOSITION TO DESOXYRIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1960 Jun;46(6):804–811. doi: 10.1073/pnas.46.6.804. [DOI] [PMC free article] [PubMed] [Google Scholar]