Abstract
It has been established that the well-known deproteinizing action of hot 45% aqueous phenol on whole cells or isolated and purified endotoxin of Serratia marcescens 08 is caused by the cleavage of a phenol-sensitive linkage within the lipid moiety. As a result of this degradation, both the lipopolysaccharide and simple protein fragments retained a part of the lipid moiety. Although not proceeding at the same fast rate as the cleavage of the lipid moiety, such phenol treatment also caused a partial hydrolysis of the O-specific side chain and ester-bound fatty acids. Hydrolysis of the O-specific side chain accounted for 5% of the lipopolysaccharide and that of ester-bound fatty acids accounted for 11% of the total fatty acid content after 60 min of treatment. It is suggested that the presence of these degradation products is one of the main causes of the heterogeneity of endotoxin and lipopolysaccharide preparations.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams G. A., Singh P. P. The linkage between the D-glucosamine units of lipid A isolated from the lipopolysaccharide of Serratia marcescens. Biochim Biophys Acta. 1969 Oct 28;187(3):457–459. doi: 10.1016/0005-2760(69)90024-1. [DOI] [PubMed] [Google Scholar]
- Alaupovic P., Olson A. C., Tsang J. Studies on the characterization of lipopolysaccharides from two strains of Serratia marcescens. Ann N Y Acad Sci. 1966 Jun 30;133(2):546–565. doi: 10.1111/j.1749-6632.1966.tb52388.x. [DOI] [PubMed] [Google Scholar]
- DISCHE Z. Qualitative and quantitative colorimetric determination of heptoses. J Biol Chem. 1953 Oct;204(2):983–997. [PubMed] [Google Scholar]
- Fensom A. H., Meadow P. M. Evidence for two regions in the polysaccharide moiety of the lipopolysaccharide of Pseudomonas aeruginosa 8602. FEBS Lett. 1970 Jul 29;9(2):81–84. doi: 10.1016/0014-5793(70)80318-0. [DOI] [PubMed] [Google Scholar]
- Gmeiner J., Lüderitz O., Westphal O. Biochemical studies on lipopolysaccharides of Salmonella R mutants. 6. Investigations on the structure of the lipid A component. Eur J Biochem. 1969 Jan;7(3):370–379. doi: 10.1111/j.1432-1033.1969.tb19618.x. [DOI] [PubMed] [Google Scholar]
- Holmgren J., Eggertsen G., Hanson L. A., Lincoln K. Immunodiffusion studies on Escherichia coli. 1. Identification of O, K and H antigens in an O6 strain. Acta Pathol Microbiol Scand. 1969;76(2):304–318. [PubMed] [Google Scholar]
- Kamio Y., Takahashi H. Chemical structure of lipid A of Selenomonas ruminantium. J Biochem. 1971 Jul;70(1):187–191. doi: 10.1093/oxfordjournals.jbchem.a129619. [DOI] [PubMed] [Google Scholar]
- Koeltzow D. E., Conrad H. E. Structural heterogeneity in the lipopolysaccharide of Aerobacter aerogenes NCTC 243. Biochemistry. 1971 Jan 19;10(2):214–224. doi: 10.1021/bi00778a004. [DOI] [PubMed] [Google Scholar]
- Lindberg A. A., Holme T. Evaluation of some extraction methods for the preparation of bacterial lipopolysaccharides for structural analysis. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(5):751–759. doi: 10.1111/j.1699-0463.1972.tb00203.x. [DOI] [PubMed] [Google Scholar]
- Lüderitz O. Recent results on the biochemistry of the cell wall lipopolysaccharides of Salmonella bacteria. Angew Chem Int Ed Engl. 1970 Sep;9(9):649–663. doi: 10.1002/anie.197006491. [DOI] [PubMed] [Google Scholar]
- Marais J. P., De Wit J. L., Quicke G. V. A critical examination of the Nelson-Somogyi method for the determination of reducing sugars. Anal Biochem. 1966 Jun;15(3):373–381. doi: 10.1016/0003-2697(66)90098-4. [DOI] [PubMed] [Google Scholar]
- Morgan W. T., Partridge S. M. Studies in immunochemistry: The use of phenol and of alkali in the degradation of antigenic material isolated from Bact. dysenteriae (Shiga). Biochem J. 1941 Nov;35(10-11):1140–1163. doi: 10.1042/bj0351140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller-Seitz E., Jann B., Jann K. Degradation studies on the lipopolysaccharide from E. coli 071:K?:H12. Separation and investigation of O-specific and core polysaccharides. FEBS Lett. 1968 Oct;1(5):311–314. doi: 10.1016/0014-5793(68)80141-3. [DOI] [PubMed] [Google Scholar]
- Nikaido H. Structure of cell wall lipopolysaccharide from Salmonella typhimurium. Further studies on the linkage between O side chains and R core. Eur J Biochem. 1970 Jul;15(1):57–62. doi: 10.1111/j.1432-1033.1970.tb00975.x. [DOI] [PubMed] [Google Scholar]
- Nowotny A., Cundy K. R., Neale N. L., Nowotny A. M., Radvany R., Thomas S. P., Tripodi D. J. Relation of structure to function in bacterial O-antigens. IV. Fractionation of the components. Ann N Y Acad Sci. 1966 Jun 30;133(2):586–603. doi: 10.1111/j.1749-6632.1966.tb52391.x. [DOI] [PubMed] [Google Scholar]
- Nowotny A. Heterogeneity of endotoxic bacterial lipopolysaccharides revealed by ion-exchange column chromatography. Nature. 1966 Apr 16;210(5033):278–280. doi: 10.1038/210278a0. [DOI] [PubMed] [Google Scholar]
- Nowotny A. Molecular aspects of endotoxic reactions. Bacteriol Rev. 1969 Mar;33(1):72–98. doi: 10.1128/br.33.1.72-98.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OSBORN M. J., ROSEN S. M., ROTHFIELD L., ZELEZNICK L. D., HORECKER B. L. LIPOPOLYSACCHARIDE OF THE GRAM-NEGATIVE CELL WALL. Science. 1964 Aug 21;145(3634):783–789. doi: 10.1126/science.145.3634.783. [DOI] [PubMed] [Google Scholar]
- PERKINS H. R., ROGERS H. J. The products of the partial acid hydrolysis of the mucopeptide from cell walls of Micrococcus lysodeikticus. Biochem J. 1959 Aug;72:647–654. doi: 10.1042/bj0720647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer J. W. A SIMPLE METHOD FOR PREPARING ANTIGENIC SUBSTANCES FROM THE TYPHOID BACILLUS. Science. 1940 Aug 16;92(2381):155–156. doi: 10.1126/science.92.2381.155. [DOI] [PubMed] [Google Scholar]
- RONDLE C. J., MORGAN W. T. The determination of glucosamine and galactosamine. Biochem J. 1955 Dec;61(4):586–589. doi: 10.1042/bj0610586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STRANGE R. E. Glucosamine values of muramic acid and other amino-sugars by the Elson and Morgan method. Nature. 1960 Jul 2;187:38–40. doi: 10.1038/187038a0. [DOI] [PubMed] [Google Scholar]
- Tarcsay L., Wang C. S., Li S. C., Alaupovic P. Composition and structure of the O-specific side chain of endotoxin from Serratia marcescens 08. Biochemistry. 1973 May 8;12(10):1948–1955. doi: 10.1021/bi00734a018. [DOI] [PubMed] [Google Scholar]
- Taylor A., Knox K. W., Work E. Chemical and biological properties of an extracellular lipopolysaccharide from Escherichia coli grown under lysine-limiting conditions. Biochem J. 1966 Apr;99(1):53–61. doi: 10.1042/bj0990053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEISSBACH A., HURWITZ J. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem. 1959 Apr;234(4):705–709. [PubMed] [Google Scholar]
- Wang C. S., Alaupovic P. Composition and structure of the O-specific side chain of endotoxin from Serratia marcescens Bizio. Biochemistry. 1973 Jan 16;12(2):309–315. doi: 10.1021/bi00726a021. [DOI] [PubMed] [Google Scholar]
- Wober W., Alaupović P. Studies on the protein moiety of endotoxin from gram-negative bacteria. Characterization of the protein moiety isolated by phenol treatment of endotoxin from Serratia marcescens 08 and Escherichia coli 0 141:K85(B). Eur J Biochem. 1971 Apr;19(3):340–356. doi: 10.1111/j.1432-1033.1971.tb01323.x. [DOI] [PubMed] [Google Scholar]




