Abstract
A cell-free protein-synthesizing system prepared from the strict chemolithotroph, Thiobacillus thiooxidans, was similar to that of heterotrophs. The poly-U directed system had a temperature optimum of 37 C, but in the presence of spermidine (3 mM) the optimum shifted to 45 C. Although growth of the chemolithotroph occurs only in acid conditions, the pH optimum for the cell-free system was pH 7.2. The endogenous-directed activity in the presence or absence of spermidine was maximal at pH 7.8. Spermidine had a stimulatory effect; however, this effect was dependent on the magnesium and tris(hydroxymethyl)aminomethane (Tris) concentrations. At low Tris concentrations (10 mM), spermidine (3 to 5 mM) could completely replace magnesium. When the Tris concentration was increased (50 mM), spermidine could not replace magnesium. Supernatant and ribosomal fractions from T. thiooxidans were exchanged with those of Bacillus thuringiensis and Escherichia coli, and the ribosomal fraction from the chemolithotroph gave good to moderate stimulation when exchanged with the supernatant from the heterotrophs. On the other hand, the supernatant from T. thiooxidans gave good stimulation when mixed with ribosomes from B. thuringiensis but poor activity with ribosomes from E. coli. Both supernatant and ribosomal fractions prepared from stationary phase extracts of T. thiooxidans were inactive in the cell-free system.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adair F. W. Membrane-associated sulfur oxidation by the autotroph Thiobacillus thiooxidans. J Bacteriol. 1966 Oct;92(4):899–904. doi: 10.1128/jb.92.4.899-904.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Algranati I. D., Lengyel P. Polynucleotide-dependent incorporation of amino acids in a cell-free system from thermophilic bacteria. J Biol Chem. 1966 Apr 25;241(8):1778–1783. [PubMed] [Google Scholar]
- Bishop H. L., Migita L. K., Doi R. H. Peptide synthesis by extracts from Bacillus subtilis spores. J Bacteriol. 1969 Sep;99(3):771–778. doi: 10.1128/jb.99.3.771-778.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borichewski R. M. Keto acids as growth-limiting factors in autotrophic growth of Thiobacillus thiooxidans. J Bacteriol. 1967 Feb;93(2):597–599. doi: 10.1128/jb.93.2.597-599.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brock T. D., Brock K. M., Belly R. T., Weiss R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972;84(1):54–68. doi: 10.1007/BF00408082. [DOI] [PubMed] [Google Scholar]
- Changchien L. M., Aronson J. N. Spermidine requirement for Bacillus thuringiensis ribosomes in cell-free phenylalanine incorporation. J Bacteriol. 1970 Sep;103(3):734–740. doi: 10.1128/jb.103.3.734-740.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutscher M. P., Chambon P., Konberg A. Biochemical studies of bacterial sporulation and germination. XI. Protein-synthesizing systems from vegetative cells and spores of Bacillus megaterium. J Biol Chem. 1968 Oct 10;243(19):5117–5125. [PubMed] [Google Scholar]
- Friedman S. M. Protein-synthesizing machinery of thermophilic bacteria. Bacteriol Rev. 1968 Mar;32(1):27–38. doi: 10.1128/br.32.1.27-38.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howden R. L., Lees H., Suzuki I. Phosphoenolpyruvate carboxylase of Thiobacillus thiooxidans. Kinetic and metabolic control properties. Can J Biochem. 1972 Feb;50(2):158–165. doi: 10.1139/o72-021. [DOI] [PubMed] [Google Scholar]
- Hurwitz C., Rosano C. L. The intracellular concentration of bound and unbound magnesium ions in Escherichia coli. J Biol Chem. 1967 Aug 25;242(16):3719–3722. [PubMed] [Google Scholar]
- Kobayashi Y., Halvorson H. O. Incorporation of amino acids into protein in a cell-free system from Bacillus cereus. Biochim Biophys Acta. 1966 Apr 18;119(1):160–170. doi: 10.1016/0005-2787(66)90047-5. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Li L., Umbreit W. W. Relationship between ribosomal activity and age of culture in Escherichia coli B. Biochim Biophys Acta. 1966 May 19;119(2):392–399. doi: 10.1016/0005-2787(66)90197-3. [DOI] [PubMed] [Google Scholar]
- MATTHAEI J. H., NIRENBERG M. W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mao J. C. Protein synthesis in a cell-free extract from Staphylococcus aureus. J Bacteriol. 1967 Jul;94(1):80–86. doi: 10.1128/jb.94.1.80-86.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin R. G., Ames B. N. THE EFFECT OF POLYAMINES AND OF POLY U SIZE ON PHENYLALANINE INCORPORATION. Proc Natl Acad Sci U S A. 1962 Dec;48(12):2171–2178. doi: 10.1073/pnas.48.12.2171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oppenheim J., Scheinbuks J., Biava C., Marcus L. Polyribosomes in Azotobacter vinelandii. I. Isolation, characterization and distribution of ribosomes, polyribosomes and subunits in logarithmically growing azotobacter. Biochim Biophys Acta. 1968 Jul 23;161(2):386–401. [PubMed] [Google Scholar]
- Phillips L. A., Franklin R. M. The in vivo distribution of bacterial polysomes, ribosomes, and ribosomal subunits. Cold Spring Harb Symp Quant Biol. 1969;34:243–253. doi: 10.1101/sqb.1969.034.01.030. [DOI] [PubMed] [Google Scholar]
- SUZUKI I., WERKMAN C. H. Chemoautotrophic carbon dioxide fixation by extracts of Thiobacillus thiooxidans. II. Formation of phosphoglyceric acid. Arch Biochem Biophys. 1958 Sep;77(1):112–123. doi: 10.1016/0003-9861(58)90047-x. [DOI] [PubMed] [Google Scholar]
- Scheinbuks J., Oppenheim J., Marcus L. A cell-free amino acid incorporating system from Azotobacter vinelandii. Arch Biochem Biophys. 1969 Jan;129(1):228–241. doi: 10.1016/0003-9861(69)90170-2. [DOI] [PubMed] [Google Scholar]
- Scheps R., Revel M. Deficiency in initiation factors of protein synthesis in stationary-phase Escherichia coli. Eur J Biochem. 1972 Sep 18;29(2):319–325. doi: 10.1111/j.1432-1033.1972.tb01991.x. [DOI] [PubMed] [Google Scholar]
- Scheps R., Wax R., Revel M. Reactivation in vitro of inactive ribosomes from stationary phase Escherichia coli. Biochim Biophys Acta. 1971 Feb 25;232(1):140–150. doi: 10.1016/0005-2787(71)90498-9. [DOI] [PubMed] [Google Scholar]
- Starkey R. L. CONCERNING THE PHYSIOLOGY OF THIOBACILLUS THIOOXIDANS, AN AUTOTROPHIC BACTERIUM OXIDIZING SULFUR UNDER ACID CONDITIONS. J Bacteriol. 1925 Mar;10(2):135–163. doi: 10.1128/jb.10.2.135-163.1925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stenesh J., Schechter N. Cell-free amino acid-incorporating systems from Bacillus licheniformis and Bacillus stearothermophilus 10. J Bacteriol. 1969 Jun;98(3):1258–1262. doi: 10.1128/jb.98.3.1258-1262.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki I. Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans. Biochim Biophys Acta. 1965 Jul 8;104(2):359–371. doi: 10.1016/0304-4165(65)90341-7. [DOI] [PubMed] [Google Scholar]
- Takeda Y. Polyamines and protein synthesis. I. The effect of polyamines on cell free polyphenylalanine synthesis in Escherichia coli. J Biochem. 1969 Sep;66(3):345–349. doi: 10.1093/oxfordjournals.jbchem.a129152. [DOI] [PubMed] [Google Scholar]
- Takeda Y. Polyamines and protein synthesis. II. The shift in optimal concentration of Mg2+ by polyamines in the MS2 phage RNA-directed polypeptide synthesis. Biochim Biophys Acta. 1969 Mar 18;179(1):232–234. doi: 10.1016/0005-2787(69)90140-3. [DOI] [PubMed] [Google Scholar]
- Waksman S. A., Joffe J. S. Microörganisms Concerned in the Oxidation of Sulfur in the Soil: II. Thiobacillus Thiooxidans, a New Sulfur-oxidizing Organism Isolated from the Soil. J Bacteriol. 1922 Mar;7(2):239–256. doi: 10.1128/jb.7.2.239-256.1922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss R. L., Kimes B. W., Morris D. R. Cations and ribosome structure. 3. Effects on the 30S and 50S subunits of replacing bound Mg 2+ by inorganic cations. Biochemistry. 1973 Jan 30;12(3):450–456. doi: 10.1021/bi00727a014. [DOI] [PubMed] [Google Scholar]
