Abstract
The oxygen-dependent inactivation of glutamine phosphoribosylpyrophosphate amidotransferase (ATase) is demonstrated in cell extracts of Bacillus subtilis. The rate of inactivation of ATase in vitro is apparently first order with respect to oxygen concentration and ATase activity. ATase inactivation in vitro (or in vivo) cannot be reactivated by a variety of reductants. ATase is significantly stabilized to oxygen-dependent inactivation in vitro in the presence of tetrasodium phosphoribosylpyrophosphate and glutamine together. The effects of the end product inhibitors, adenosine 5-monophosphate (AMP) and guanosine 5-monophosphate (GMP), on the stability of ATase are antagonistic. AMP stabilizes ATase, whereas GMP destabilizes the enzyme. The stability of ATase can be manipulated over wide ranges by variations in the AMP/GM ratio. The effects of AMP and GMP on the inactivation of ATase in vitro are very specific. ATase is partially inhibited by 1,10-phenanthroline, suggesting that the enzyme contains iron (or some other chelatable metal ion). The inactivation of ATase in vitro is proposed to present a model for the reconstruction of the inactivation of ATase in stationary-phase cells of B. subtilis.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutscher M. P., Kornberg A. Biochemical studies of bacterial sporulation and germination. 8. Patterns of enzyme development during growth and sporulation of Baccillus subtilis. J Biol Chem. 1968 Sep 25;243(18):4653–4660. [PubMed] [Google Scholar]
- HARTMAN S. C. PHOSPHORIBOSYL PYROPHOSPHATE AMIDOTRANSFERASE. PURIFICATION AND GENERAL CATALYTIC PROPERTIES. J Biol Chem. 1963 Sep;238:3024–3035. [PubMed] [Google Scholar]
- Hochstadt-Ozer J., Stadtman E. R. The regulation of purine utilization in bacteria. I. Purification of adenine phosphoribosyltransferase from Escherichia coli K12 and control of activity by nucleotides. J Biol Chem. 1971 Sep 10;246(17):5294–5303. [PubMed] [Google Scholar]
- Holmes E. W., Wyngaarden J. B., Kelley W. N. Human glutamine phosphoribosylpyrophosphate amidotransferase. Two molecular forms interconvertible by purine ribonucleotides and phosphoribosylpyrophosphate. J Biol Chem. 1973 Sep 10;248(17):6035–6040. [PubMed] [Google Scholar]
- Rowe P. B., Coleman M. D., Wyngaarden J. B. Glutamine phosphoribosylpyrophosphate amidotransferase. Catalytic and conformational heterogeneity of the pigeon liver enzyme. Biochemistry. 1970 Mar 31;9(7):1498–1505. doi: 10.1021/bi00809a004. [DOI] [PubMed] [Google Scholar]
- Rowe P. B., Wyngaarden J. B. Glutamine phosphoribosylpyrophosphate amidotransferase. Purification, substructure, amino acid composition, and absorption spectra. J Biol Chem. 1968 Dec 25;243(24):6373–6383. [PubMed] [Google Scholar]
- Shiio I., Ishii K. Regulation of purine ribonucleotide synthesis by end product inhibition. II. Effect of purine nucleotides on phosphoribosylpyrophosphate amidotransferase of Bacillus subtilis. J Biochem. 1969 Aug;66(2):175–181. doi: 10.1093/oxfordjournals.jbchem.a129133. [DOI] [PubMed] [Google Scholar]
- Trotta P. P., Pinkus L. M., Meister A. Inhibition by dithiothreitol of the utilization of glutamine by carbamyl phosphate synthetase. Evidence for formation of hydrogen peroxide. J Biol Chem. 1974 Mar 25;249(6):1915–1921. [PubMed] [Google Scholar]
- Turnbough C. L., Jr, Switzer R. L. Oxygen-dependent inactivation of glutamine phosphoribosylpyrophosphate amidotransferase in stationary-phase cultures of Bacillus subtilis. J Bacteriol. 1975 Jan;121(1):108–114. doi: 10.1128/jb.121.1.108-114.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
