Abstract
Aberrant meiotic segregations attributable to intragenic events have been analyzed in an unselected sample of 1611 tetrads from three heteroallelic diploids of Saccharomyces cerevisiae. Reciprocal recombination between alleles accounts for only a minor fraction of the total aberrant tetrads, while the majority component is represented by single- and double-site conversions. The frequency of double-site conversion is inversely related to the physical length of the interallelic interval. Since double-site conversions do not yield prototrophs, their occurrence leads to biased estimates of intragenic distances. Conversion is viewed as a process of informational transfer distinct from conventional crossing-over. The implications of the findings for genetic fine structure mapping and evolutionary theory are discussed briefly.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARRATT R. W., NEWMEYER D., PERKINS D. D., GARNJOBST L. Map construction in Neurospora crassa. Adv Genet. 1954;6:1–93. doi: 10.1016/s0065-2660(08)60127-3. [DOI] [PubMed] [Google Scholar]
- CASE M. E., GILES N. H. ALLELIC RECOMBINATION IN NEUROSPORA: TETRAD ANALYSIS OF A THREE-POINT CROSS WITHIN THE PAN-2 LOCUS. Genetics. 1964 Mar;49:529–540. doi: 10.1093/genetics/49.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fogel S., Hurst D. D. Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics. 1967 Oct;57(2):455–481. doi: 10.1093/genetics/57.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HURST D. D., FOGEL S. MITOTIC RECOMBINATION AND HETEROALLELIC REPAIR IN SACCHAROMYCES CEREVISIAE. Genetics. 1964 Sep;50:435–458. doi: 10.1093/genetics/50.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawthorne D C, Mortimer R K. Chromosome Mapping in Saccharomyces: Centromere-Linked Genes. Genetics. 1960 Aug;45(8):1085–1110. doi: 10.1093/genetics/45.8.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MANNEY T. R., MORTIMER R. K. ALLELIC MAPPING IN YEAST BY X-RAY-INDUCED MITOTIC REVERSION. Science. 1964 Feb 7;143(3606):581–583. doi: 10.1126/science.143.3606.581. [DOI] [PubMed] [Google Scholar]
- Mitchell M. B. ABERRANT RECOMBINATION OF PYRIDOXINE MUTANTS OF Neurospora. Proc Natl Acad Sci U S A. 1955 Apr 15;41(4):215–220. doi: 10.1073/pnas.41.4.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mortimer R., Brustad T., Cormack D. V. Influence of linear energy transfer and oxygen tension on the effectiveness of ionizing radiations for induction of mutations and lethality in Saccharomyces cerevisiae. Radiat Res. 1965 Dec;26(4):465–482. [PubMed] [Google Scholar]
- Perkins D. D. Biochemical Mutants in the Smut Fungus Ustilago Maydis. Genetics. 1949 Sep;34(5):607–626. doi: 10.1093/genetics/34.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROMAN H., HAWTHORNE D. C., DOUGLAS H. C. Polypoidy in yeast and its bearing on the occurrence of irregular genetic ratios. Proc Natl Acad Sci U S A. 1951 Feb;37(2):79–84. doi: 10.1073/pnas.37.2.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITEHOUSE H. L., HASTINGS P. J. THE ANALYSIS OF GENETIC RECOMBINATION ON THE POLARON HYBRID DNA MODEL. Genet Res. 1965 Feb;6:27–92. doi: 10.1017/s0016672300003955. [DOI] [PubMed] [Google Scholar]
- Zimmermann F. K. Enzyme studies on the products of mitotic gene conversion in Saccharomyces cerevisiae. Mol Gen Genet. 1968;101(2):171–184. doi: 10.1007/BF00336583. [DOI] [PubMed] [Google Scholar]