Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Jan;62(1):226–233. doi: 10.1073/pnas.62.1.226

INTERRELATION BETWEEN ACTIVATION AND POLYMERIZATION IN GRAMICIDIN S BIOSYNTHESIS*

Horst Kleinkauf 1,, Wieland Gevers 1,, Fritz Lipmann 1
PMCID: PMC285977  PMID: 5253659

Abstract

The nucleic acid-independent biosynthesis of the peptide antibiotic gramicidin S results from the interaction of an enzyme bearing phenylalanine in activated form with a polyenzyme system charged with the other four component amino acids.

After reaction with ATP, magnesium, and any or all of its amino acid substrates, the polyenzyme system (mol wt 280,000) yields complexes containing AMP and the respective amino acids in the proportion of 1 to 2. Similar complexes are formed by another enzyme (mol wt 100,000) on incubation with ATP, magnesium, and L- or D-phenylalanine. The amino acids are probably bound as aminoacyl adenylates and then transferred to another function on the enzyme. Initiation of polymerization is achieved by combination of the two complexes. No ATP is needed for completion of synthesis, and free intermediates are not released. Enzyme organization and specificity are responsible for the ordering of the amino acid sequence.

Full text

PDF
226

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  2. CRAMPTON C. F., FRANKEL F. R., BENSON A. M., WADE A. Procedures for the analysis of purines and pyrimidines by elution from columns of sulfonated polystyrene with buffers of pH 4. Anal Biochem. 1960 Nov;1:249–262. doi: 10.1016/0003-2697(60)90052-x. [DOI] [PubMed] [Google Scholar]
  3. DINTZIS H. M. Assembly of the peptide chains of hemoglobin. Proc Natl Acad Sci U S A. 1961 Mar 15;47:247–261. doi: 10.1073/pnas.47.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fujikawa K., Suzuki T., Kurahashi K. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. I. Preparation of partially purified enzyme system and its properties. Biochim Biophys Acta. 1968 Jun 18;161(1):232–246. doi: 10.1016/0005-2787(68)90313-4. [DOI] [PubMed] [Google Scholar]
  5. Gevers W., Kleinkauf H., Lipmann F. The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci U S A. 1968 May;60(1):269–276. doi: 10.1073/pnas.60.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Itoh H., Yamada M., Tomino S., Kurahashi K. The role of two complementary fractions of gramicidin S synthesizing enzyme system. J Biochem. 1968 Aug;64(2):259–261. doi: 10.1093/oxfordjournals.jbchem.a128888. [DOI] [PubMed] [Google Scholar]
  7. MACH B., TATUM E. L. ENVIRONMENTAL CONTROL OF AMINO ACID SUBSTITUTIONS IN THE BIOSYNTHESIS OF THE ANTIBIOTIC POLYPEPTIDE TYROCIDINE. Proc Natl Acad Sci U S A. 1964 Oct;52:876–884. doi: 10.1073/pnas.52.4.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  9. Ruttenberg M. A., Mach B. Studies on amino acid substitution in the biosynthesis of the antibiotic polypeptide tyrocidine. Biochemistry. 1966 Sep;5(9):2864–2869. doi: 10.1021/bi00873a013. [DOI] [PubMed] [Google Scholar]
  10. SARGES R., WITKOP B. GRAMICIDIN A. V. THE STRUCTURE OF VALINE- AND ISOLEUCINE-GRAMICIDIN A. J Am Chem Soc. 1965 May 5;87:2011–2020. doi: 10.1021/ja01087a027. [DOI] [PubMed] [Google Scholar]
  11. Tomino S., Kurahashi K. Enzymic synthesis of D-phenylalanyl-L-prolyl-L-valine, a peptide sequence present in gramicidin S. Biochem Biophys Res Commun. 1964 Oct 14;17(3):288–293. doi: 10.1016/0006-291x(64)90399-7. [DOI] [PubMed] [Google Scholar]
  12. Vallee B. L., Hoch F. L. ZINC, A COMPONENT OF YEAST ALCOHOL DEHYDROGENASE. Proc Natl Acad Sci U S A. 1955 Jun 15;41(6):327–338. doi: 10.1073/pnas.41.6.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yamada M., Kurahashi K. Adenosine triphosphate and pyrophosphate dependent phenylalanine racemase of Bacillus brevis Nagano. J Biochem. 1968 Jan;63(1):59–69. doi: 10.1093/oxfordjournals.jbchem.a128748. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES