Abstract
This paper reports the discovery that the activity of the multienzyme pyruvate dehydrogenase complex from beef kidney mitochondria is regulated by a phosphorylation-dephosphorylation reaction sequence. The site of this regulation is the pyruvate dehydrogenase component of the complex. Phosphorylation and concomitant inactivation of pyruvate dehydrogenase are catalyzed by an ATP-specific kinase (i.e., a pyruvate dehydrogenase kinase), and dephosphorylation and concomitant reactivation are catalyzed by a phosphatase (i.e., a pyruvate dehydrogenase phosphatase). The kinase and the phosphatase appear to be regulatory subunits of the pyruvate dehydrogenase complex.
Full text
PDF![234](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b416/285978/b50c077f9e72/pnas00091-0245.png)
![235](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b416/285978/67b487e70b80/pnas00091-0246.png)
![236](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b416/285978/054b8edfe6e2/pnas00091-0247.png)
![237](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b416/285978/7b667b2db379/pnas00091-0248.png)
![238](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b416/285978/9acc0afdab31/pnas00091-0249.png)
![239](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b416/285978/3c313a5e9dd6/pnas00091-0250.png)
![240](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b416/285978/d27c1d8fdbd9/pnas00091-0251.png)
![241](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b416/285978/716d5c37f71b/pnas00091-0252.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. Formation constants for the complexes of adenosine di- or tri-phosphate with magnesium or calcium ions. Biochem J. 1959 Feb;71(2):388–395. doi: 10.1042/bj0710388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRIEDMAN D. L., LARNER J. STUDIES ON UDPG-ALPHA-GLUCAN TRANSGLUCOSYLASE. III. INTERCONVERSION OF TWO FORMS OF MUSCLE UDPG-ALPHA-GLUCAN TRANSGLUCOSYLASE BY A PHOSPHORYLATION-DEPHOSPHORYLATION REACTION SEQUENCE. Biochemistry. 1963 Jul-Aug;2:669–675. doi: 10.1021/bi00904a009. [DOI] [PubMed] [Google Scholar]
- Hayakawa T., Koike M. Mammalian alpha-keto acid dehydrogenase complexes. 3. Resolution and reconstitution of the pig heart pyruvate dehydrogenase complex. J Biol Chem. 1967 Mar 25;242(6):1356–1358. [PubMed] [Google Scholar]
- Ishikawa E., Oliver R. M., Reed L. J. Alpha-Keto acid dehydrogenase complexes, V. Macromolecular organization of pyruvate and alpha-ketoglutarate dehydrogenase complexes isolated from beef kidney mitochondria. Proc Natl Acad Sci U S A. 1966 Aug;56(2):534–541. doi: 10.1073/pnas.56.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEECH D. B., UTTER M. F. PYRUVATE CARBOXYLASE. II. PROPERTIES. J Biol Chem. 1963 Aug;238:2609–2614. [PubMed] [Google Scholar]
- KOIKE M., REED L. J., CARROLL W. R. alpha-Keto acid dehydrogenation complexes. IV. Resolution and reconstitution of the Escherichia coli pyruvate dehydrogenation complex. J Biol Chem. 1963 Jan;238:30–39. [PubMed] [Google Scholar]
- KREBS H. THE CROONIAN LECTURE, 1963. GLUCONEOGENESIS. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:545–564. doi: 10.1098/rspb.1964.0019. [DOI] [PubMed] [Google Scholar]
- Kingdon H. S., Shapiro B. M., Stadtman E. R. Regulation of glutamine synthetase. 8. ATP: glutamine synthetase adenylyltransferase, an enzyme that catalyzes alterations in the regulatory properties of glutamine synthetase. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1703–1710. doi: 10.1073/pnas.58.4.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholls D. G., Shepherd D., Garland P. B. A continuous recording technique for the measurement of carbon dioxide, and its application to mitochondrial oxidation and decarboxylation reactions. Biochem J. 1967 Jun;103(3):677–691. doi: 10.1042/bj1030677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz E. R., Old L. O., Reed L. J. Regulatory properties of pyruvate dehydrogenase from Escherichia coli. Biochem Biophys Res Commun. 1968 May 10;31(3):495–500. doi: 10.1016/0006-291x(68)90504-4. [DOI] [PubMed] [Google Scholar]
- Walter P., Paetkau V., Lardy H. A. Paths of carbon in gluconeogenesis and lipogenesis. 3. The role and regulation of mitochondrial processes involved in supplying precursors of phosphoenolpyruvate. J Biol Chem. 1966 Jun 10;241(11):2523–2532. [PubMed] [Google Scholar]
- YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
- von Jagow G., Westermann B., Wieland O. Suppression of pyruvate oxidation in liver mitochondria in the presence of long-chain fatty acid. Eur J Biochem. 1968 Feb;3(4):512–518. doi: 10.1111/j.1432-1033.1967.tb19561.x. [DOI] [PubMed] [Google Scholar]