Abstract
Single-strand nicks caused by DNase I are capable of inactivating B. subtilis transforming DNA. Under suitable conditions, the polynucleotide joining enzyme from E. coli and a similar DPN-requiring activity from B. subtilis can completely repair this damage, restore biological activity, and increase the single-strand molecular weight. The rates of inactivation of a single genetic marker and of a four-marker linkage group suggest that a single-strand nick is inactivating even when far from the site of genetic damage.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BODMER W. F., GANESAN A. T. BIOCHEMICAL AND GENETIC STUDIES OF INTEGRATION AND RECOMBINATION IN BACILLUS SUBTILIS TRANSFORMATION. Genetics. 1964 Oct;50:717–738. doi: 10.1093/genetics/50.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bautz E. K. A biological assay for polynucleotide ligase: recovery of marker activity in DNA-transformation. Biochem Biophys Res Commun. 1967 Aug 23;28(4):641–646. doi: 10.1016/0006-291x(67)90362-2. [DOI] [PubMed] [Google Scholar]
- Becker A., Lyn G., Gefter M., Hurwitz J. The enzymatic repair of DNA, II. Characterization of phage-induced sealase. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1996–2003. doi: 10.1073/pnas.58.5.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodmer W. F. Integration of deoxyribonuclease-treated DNA in bacillus subtilis transformation. J Gen Physiol. 1966 Jul;49(6):233–258. doi: 10.1085/jgp.49.6.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GANESAN A. T., LEDERBERG J. PHYSICAL AND BIOLOGICAL STUDIES ON TRANSFORMING DNA. J Mol Biol. 1964 Sep;9:683–695. doi: 10.1016/s0022-2836(64)80175-3. [DOI] [PubMed] [Google Scholar]
- Olivera B. M., Lehman I. R. Diphosphopyridine nucleotide: a cofactor for the polynucleotide-joining enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1700–1704. doi: 10.1073/pnas.57.6.1700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olivera B. M., Lehman I. R. Linkage of polynucleotides through phosphodiester bonds by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1967 May;57(5):1426–1433. doi: 10.1073/pnas.57.5.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHARDSON C. C., KORNBERG A. A DEOXYRIBONUCLEIC ACID PHOSPHATASE-EXONUCLEASE FROM ESCHERICHIA COLI. I. PURIFICATION OF THE ENZYME AND CHARACTERIZATION OF THE PHOSPHATASE ACTIVITY. J Biol Chem. 1964 Jan;239:242–250. [PubMed] [Google Scholar]
- RICHARDSON C. C., SCHILDKRAUT C. L., APOSHIAN H. V., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XIV. FURTHER PURIFICATION AND PROPERTIES OF DEOXYRIBONUCLEIC ACID POLYMERASE OF ESCHERICHIA COLI. J Biol Chem. 1964 Jan;239:222–232. [PubMed] [Google Scholar]
- Takagi J., Ando T., Ikeda Y. Repair of single strand breaks in transforming DNA by polynucleotide ligase. Biochem Biophys Res Commun. 1968 May 23;31(4):540–544. doi: 10.1016/0006-291x(68)90511-1. [DOI] [PubMed] [Google Scholar]
- Weiss B., Richardson C. C. Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1021–1028. doi: 10.1073/pnas.57.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerman S. B., Little J. W., Oshinsky C. K., Gellert M. Enzymatic joining of DNA strands: a novel reaction of diphosphopyridine nucleotide. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1841–1848. doi: 10.1073/pnas.57.6.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]