Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Sep;64(1):241–246. doi: 10.1073/pnas.64.1.241

COMPLEMENTARY FRACTIONS OF DENATURED DNA OF COLIPHAGE T3 AS TEMPLATES FOR TRANSCRIPTION*

Loretta Chiuh-Yeou Cheong 1, Erwin Chargaff 1,
PMCID: PMC286153  PMID: 5263007

Abstract

This paper discusses the evidence that two fractions obtained by the chromatography of denatured DNA of phage T3 on columns of methylated albumin-kieselguhr represent the complementary strands. This evidence derives from a variety of temperature-absorbance measurements and from the base composition of the RNA products synthesized by RNA polymerase under the direction of the two single-stranded DNA templates.

Full text

PDF
241

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENDET I., SCHACHTER E., LAUFFER M. A. The size of T3 DNA. J Mol Biol. 1962 Jul;5:76–79. doi: 10.1016/s0022-2836(62)80062-x. [DOI] [PubMed] [Google Scholar]
  2. CHAMBERLIN M., BERG P. Deoxyribo ucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:81–94. doi: 10.1073/pnas.48.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHAMBERLIN M., BERG P. MECHANISM OF RNA POLYMERASE ACTION: CHARACTERIZATION OF THE DNA-DEPENDENT SYNTHESIS OF POLYADENYLIC ACID. J Mol Biol. 1964 May;8:708–726. doi: 10.1016/s0022-2836(64)80120-0. [DOI] [PubMed] [Google Scholar]
  4. Cheong L. C., Chargaff E. Native and denatured DNA of phage T3 and of E. coli B as templates for RNA polymerase. Nature. 1969 Mar 22;221(5186):1144–1146. doi: 10.1038/2211144a0. [DOI] [PubMed] [Google Scholar]
  5. Karkas J. D., Chargaff E. Template functions in the enzymic formation of polyribonucleotides, I. Integrity of the DNA template. Proc Natl Acad Sci U S A. 1966 Aug;56(2):664–671. doi: 10.1073/pnas.56.2.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Karkas J. D., Chargaff E. Template functions in the enzymic formation of polyribonucleotides. IV. Denatured DNA as template. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1645–1651. doi: 10.1073/pnas.58.4.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Karkas J. D., Rudner R., Chargaff E. Seapration of B. subtilis DNA into complementary strands. II. Template functions and composition as determined by transcription with RNA polymerase. Proc Natl Acad Sci U S A. 1968 Jul;60(3):915–920. doi: 10.1073/pnas.60.3.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kubinski H., Opara-Kubinska Z., Szybalski W. Patterns of interaction between polyribonucleotides and individual DNA strands derived from several vertebrates, bacteria and bacteriophages. J Mol Biol. 1966 Sep;20(2):313–329. doi: 10.1016/0022-2836(66)90067-2. [DOI] [PubMed] [Google Scholar]
  9. Lang D., Bujard H., Wolff B., Russell D. Electron microscopy of size and shape of viral DNA in solutions of different ionic strengths. J Mol Biol. 1967 Jan 28;23(2):163–181. doi: 10.1016/s0022-2836(67)80024-x. [DOI] [PubMed] [Google Scholar]
  10. Lin H. J., Chargaff E. On the denaturation of deoxyribonucleic acid. Biochim Biophys Acta. 1966 Jul 20;123(1):66–75. doi: 10.1016/0005-2787(66)90159-6. [DOI] [PubMed] [Google Scholar]
  11. Ritchie D. A., Thomas C. A., Jr, MacHattie L. A., Wensink P. C. Terminal repetition in non-permuted T3 and T7 bacteriophage DNA molecules. J Mol Biol. 1967 Feb 14;23(3):365–376. doi: 10.1016/s0022-2836(67)80111-6. [DOI] [PubMed] [Google Scholar]
  12. Roger M., Beckmann C. O., Hotchkiss R. D. Fractionation of denatured pneumococcal DNA: evidence for resolution of complementary strands. J Mol Biol. 1966 Jun;18(1):174–194. doi: 10.1016/s0022-2836(66)80084-0. [DOI] [PubMed] [Google Scholar]
  13. Roger M. Chromatographic resolution of complementary strands of denatured Pneumococcal DNA. Proc Natl Acad Sci U S A. 1968 Jan;59(1):200–207. doi: 10.1073/pnas.59.1.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rudner R., Karkas J. D., Chargaff E. Separation of B. subtilis DNA into complementary strands, I. Biological properties. Proc Natl Acad Sci U S A. 1968 Jun;60(2):630–635. doi: 10.1073/pnas.60.2.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rudner R., Karkas J. D., Chargaff E. Separation of B. subtilis DNA into complementary strands. 3. Direct analysis. Proc Natl Acad Sci U S A. 1968 Jul;60(3):921–922. doi: 10.1073/pnas.60.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rudner R., Karkas J. D., Chargaff E. Separation of microbial deoxyribonucleic acids into complementary strands. Proc Natl Acad Sci U S A. 1969 May;63(1):152–159. doi: 10.1073/pnas.63.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rudner R., Lin H. J., Hoffmann E. M., Chargaff E. Studies on the loss and the restoration of the transforming activity of the deoxyribonucleic acid of Bacillus subtilis. Biochim Biophys Acta. 1967 Nov 21;149(1):199–219. doi: 10.1016/0005-2787(67)90702-2. [DOI] [PubMed] [Google Scholar]
  18. Rudner R., Shapiro H. S., Chargaff E. Studies on the nucleotide arrangement in deoxyribonucleic acids. X. Frequency and composition of pyrimidine isostichs in microbial deoxyribonucleic acids and in the DNA of E. coli phage T3. Biochim Biophys Acta. 1966 Oct 24;129(1):85–103. [PubMed] [Google Scholar]
  19. SUEOKA N., CHENG T. Y. Fractionation of nucleic acids with the methylated albumin column. J Mol Biol. 1962 Mar;4:161–172. doi: 10.1016/s0022-2836(62)80048-5. [DOI] [PubMed] [Google Scholar]
  20. Shapiro H. S., Rudner R., Miura K. I., Chargaff E. Inferences from the distribution of pyrimidine isostichs in deoxyribonucleic acids. Nature. 1965 Mar 13;205(976):1068–1070. doi: 10.1038/2051068a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES