Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Jan;65(1):137–144. doi: 10.1073/pnas.65.1.137

Formation of Assimilatory Nitrate Reductase by in vitro Inter-Cistronic Complementation in Neurospora crassa*

Alvin Nason 1, Alan D Antoine 1,, Paul A Ketchum 1,, William A Frazier III 1, David K Lee 1
PMCID: PMC286202  PMID: 4391854

Abstract

In vitro complementation of the soluble assimilatory nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-nitrate reductase was attained by mixing cell-free preparations of certain Neurospora nitrate reductase mutants: induced nit-1 (uniquely possessing inducible NADPH-cytochrome c reductase) with (a) uninduced or induced nit-2 or nit-3, or (b) uninduced wild type. The complementing activity of induced nit-1 is soluble while that of nit-2, nit-3, and wild type is particulate but not of mitochondrial origin. All fractions are inactivated by heat or trypsin. The NADPH-nitrate reductase enzymes formed in the above three complementing mixtures are similar to the wild-type enzyme in sucrose density gradient profiles, molecular weight, substrate affinity, sensitivity to inhibitors and temperature, but show different ratios of associated enzyme activities. The data suggest that nitrate reductase consists of at least two protein subunits: a nitrate-inductible subunit as reflected by inductible NADPH-cytochrome c reductase, and a constitutive protein which is activated (as indicated by the appearance of flavine adenine dinucleotide, reduced form (FADH2)- and reduced methyl viologen-nitrate reductase activities) when it combines with the inductible subunit.

Full text

PDF
137

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azoulay E., Puig J., Couchoud-Beaumont P. Etude des mutants chlorate-résistants chez Escherichia coli K 12. I. Reconstitution in vitro de l'activité nitrate-réductase particulaire chez Escherichia coli K 12. Biochim Biophys Acta. 1969 Feb 11;171(2):238–252. doi: 10.1016/0005-2744(69)90157-0. [DOI] [PubMed] [Google Scholar]
  2. COVE D. J., PATEMAN J. A. Independently segregating genetic loci concerned with nitrate reductase activity in Aspergillus nidulans. Nature. 1963 Apr 20;198:262–263. doi: 10.1038/198262a0. [DOI] [PubMed] [Google Scholar]
  3. Garrett R. H., Nason A. Further purification and properties of Neurospora nitrate reductase. J Biol Chem. 1969 Jun 10;244(11):2870–2882. [PubMed] [Google Scholar]
  4. Garrett R. H., Nason A. Involvement of a B-type cytochrome in the assimilatory nitrate reductase of Neurospora crassa. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1603–1610. doi: 10.1073/pnas.58.4.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KINSKY S. C., McELROY W. D. Neurospora nitrate reductase: the role of phosphate flavine and cytochrome c reductase. Arch Biochem Biophys. 1958 Feb;73(2):466–483. doi: 10.1016/0003-9861(58)90290-x. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  8. NASON A., EVANS H. J. Triphosphopyridine nucleotide-nitrate reductase in Neurospora. J Biol Chem. 1953 Jun;202(2):655–673. [PubMed] [Google Scholar]
  9. NICHOLAS D. J., NASON A., McELROY W. D. Molybdenum and nitrate reductase. I. Effect of molybdenum deficiency on the Neurospora enzyme. J Biol Chem. 1954 Mar;207(1):341–351. [PubMed] [Google Scholar]
  10. NICHOLAS D. J., NASON A. Molybdenum and nitrate reductase. II. Molybdenum as a constituent of nitrate reductase. J Biol Chem. 1954 Mar;207(1):353–360. [PubMed] [Google Scholar]
  11. Sorger G. J., Giles N. H. Genetic control of nitrate reductase in Neurospora crassa. Genetics. 1965 Oct;52(4):777–788. doi: 10.1093/genetics/52.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sorger G. J. Nitrate reductase electron transport systems in mutant and in wild-type strains of Neurospora. Biochim Biophys Acta. 1966 Jun 15;118(3):484–494. doi: 10.1016/s0926-6593(66)80091-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES