Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Jan;65(1):152–159. doi: 10.1073/pnas.65.1.152

Changes in the Physical State of DNA during Replication in Regenerating Liver of the Rat*

Henry Berger Jr 1,, J Logan Irvin 1
PMCID: PMC286204  PMID: 5263745

Abstract

Evidence is presented which demonstrates that DNA synthesis in regenerating liver is discontinuous. In pulse-labeling experiments from 30 seconds to 10 minutes, the earliest detectable intermediate in DNA replication appears to be double-stranded DNA which has a significant degree of single-stranded character probably due to the existence of gaps in the newly synthesized strand. The label begins to move into completely double-stranded DNA 10-30 minutes after the commencement of labeling. The average molecular weight of the single-stranded „unit” of DNA replication is determined to be approximately 7.5 million. Smaller units may be produced but not observed as a result of imperfect synchronization of DNA synthesis.

Full text

PDF
152

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernardi G. Chromatography of nucleic acids on hydroxyapatite. Nature. 1965 May 22;206(4986):779–783. doi: 10.1038/206779a0. [DOI] [PubMed] [Google Scholar]
  2. Friedman D. L., Mueller G. C. Studies on the nature of replicating DNA of HeLa cells. Biochim Biophys Acta. 1969 Jan 21;174(1):253–263. doi: 10.1016/0005-2787(69)90249-4. [DOI] [PubMed] [Google Scholar]
  3. Hosoda J., Mathews E. DNA replication in vivo by a temperature-sensitive polynucleotide ligase mutant of T4. Proc Natl Acad Sci U S A. 1968 Nov;61(3):997–1004. doi: 10.1073/pnas.61.3.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kirby K. S., Cook E. A. Isolation of deoxyribonucleic acid from mammalian tissues. Biochem J. 1967 Jul;104(1):254–257. doi: 10.1042/bj1040254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lehmann A. R., Ormerod M. G. Artefact in the measurement of the molecular weight of pulse labelled DNA. Nature. 1969 Mar 15;221(5185):1053–1056. doi: 10.1038/2211053b0. [DOI] [PubMed] [Google Scholar]
  6. McEwen C. R. Tables for estimating sedimentation through linear concentration gradients of sucrose solution. Anal Biochem. 1967 Jul;20(1):114–149. doi: 10.1016/0003-2697(67)90271-0. [DOI] [PubMed] [Google Scholar]
  7. Oishi M. Studies of DNA replication in vivo. I. Isolation of the first intermediate of DNA replication in bacteria as single-stranded DNA. Proc Natl Acad Sci U S A. 1968 May;60(1):329–336. doi: 10.1073/pnas.60.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Okazaki R., Okazaki T., Sakabe K., Sugimoto K., Sugino A. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci U S A. 1968 Feb;59(2):598–605. doi: 10.1073/pnas.59.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  10. Schandl E. K., Taylor J. H. Early events in the replication and integration of DNA into mammalian chromosomes. Biochem Biophys Res Commun. 1969 Feb 7;34(3):291–300. doi: 10.1016/0006-291x(69)90830-4. [DOI] [PubMed] [Google Scholar]
  11. Tsukada K., Moriyama T., Lynch W. E., Lieberman I. Polydeoxynucleotide intermediates in DNA replication in regenerating liver. Nature. 1968 Oct 12;220(5163):162–164. doi: 10.1038/220162a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES