Abstract
Chiral inositols (D-chiro-inositol from D-pinitol and L-chiro-inositol from L-quebrachitol) were converted to the 3,4-di-O-benzyl ethers, which were selectively benzoylated to yield the 1,2,5-tri-O-benzoyl-3,4-di-O-benzyl-chiro-inositols. The free hydroxyl group in each derivative was inverted by way of the trifluoromethane sulfonate ester to provide D- and L-1,2,4-tri-O-benzoyl-5,6-di-O-benzyl-myo-inositol. Hydrogenolysis to remove the benzyl ether groups gave the enantiomeric 1,2,4-tri-O-benzoyl-myo-inositols, which were phosphorylated by a dibenzylphosphite triester method. After hydrogenolysis and saponification of the derivatives, the D- and L-myo-inositol 1,4,5-trisphosphates were isolated as the crystalline cyclohexylammonium salts in gram quantity.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROCKERHOFF H., BALLOU C. E. On the metabolism of the brain phosphoinositide complex. J Biol Chem. 1962 Jun;237:1764–1766. [PubMed] [Google Scholar]
- BROCKERHOFF H., BALLOU C. E. Phosphate incorporation in brain phosphionositides. J Biol Chem. 1962 Jan;237:49–52. [PubMed] [Google Scholar]
- Brown D. M., Stewart J. C. The structure of triphosphoinositide from beef brain. Biochim Biophys Acta. 1966 Dec 7;125(3):413–421. doi: 10.1016/0005-2760(66)90029-4. [DOI] [PubMed] [Google Scholar]
- Chang M., Ballou C. E. Specificity of ox brain triphosphoinositide phosphomonoesterase. Biochem Biophys Res Commun. 1967 Jan 23;26(2):199–205. doi: 10.1016/0006-291x(67)90234-3. [DOI] [PubMed] [Google Scholar]
- DITTMER J. C., DAWSON R. M. The isolation of a new complex lipid: triphosphoinostide from ox brain. Biochim Biophys Acta. 1960 May 20;40:379–380. doi: 10.1016/0006-3002(60)91375-5. [DOI] [PubMed] [Google Scholar]
- GRADO C., BALLOU C. E. Myo-inositol phosphates obtained by alkaline hydrolysis of beef brain phosphoinositide. J Biol Chem. 1961 Jan;236:54–60. [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. THE INCORPORATION OF 32P FROM TRIPHOSPHATE INTO POLYPHOSPHOINOSITIDES (GAMMA-32P)ADENOSINE AND PHOSPHATIDIC ACID IN ERYTHROCYTE MEMBRANES. Biochim Biophys Acta. 1964 Oct 2;84:563–575. doi: 10.1016/0926-6542(64)90126-x. [DOI] [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. THE INCORPORATION OF 32P FROM TRIPHOSPHATE INTO POLYPHOSPHOINOSITIDES (GAMMA-32P)ADENOSINE AND PHOSPHATIDIC ACID IN ERYTHROCYTE MEMBRANES. Biochim Biophys Acta. 1964 Oct 2;84:563–575. doi: 10.1016/0926-6542(64)90126-x. [DOI] [PubMed] [Google Scholar]
- Hokin L. E. Receptors and phosphoinositide-generated second messengers. Annu Rev Biochem. 1985;54:205–235. doi: 10.1146/annurev.bi.54.070185.001225. [DOI] [PubMed] [Google Scholar]
- Letsinger R. L., Lunsford W. B. Synthesis of thymidine oligonucleotides by phosphite triester intermediates. J Am Chem Soc. 1976 Jun 9;98(12):3655–3661. doi: 10.1021/ja00428a045. [DOI] [PubMed] [Google Scholar]
- Lindon J. C., Baker D. J., Farrant R. D., Williams J. M. 1H, 13C and 31P n.m.r. spectra and molecular conformation of myo-inositol 1,4,5-triphosphate. Biochem J. 1986 Jan 1;233(1):275–277. doi: 10.1042/bj2330275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streb H., Irvine R. F., Berridge M. J., Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983 Nov 3;306(5938):67–69. doi: 10.1038/306067a0. [DOI] [PubMed] [Google Scholar]
- TOMLINSON R. V., BALLOU C. E. Complete characterization of the myo-inositol polyphosphates from beef brain phosphoinositide. J Biol Chem. 1961 Jul;236:1902–1906. [PubMed] [Google Scholar]
