Abstract
Skeletal muscle degeneration associated with mitochondrial damage was found after marked depletion of glutathione produced by administration to mice of buthionine sulfoximine, an irreversible inhibitor of gamma-glutamylcysteine synthetase. No mitochondrial damage was found in heart. These studies show that in the absence of applied stress (such as ischemia, drug toxicity), very marked depletion (to approximately 3% of the controls) of glutathione must occur before skeletal muscle mitochondria are affected and thus suggest that muscle has a large excess of glutathione. Depletion of glutathione followed a biphasic pattern in skeletal muscle and heart, probably reflecting, in the slow phase, loss of glutathione from mitochondria. Skeletal muscle degeneration did not occur when glutathione monoisopropyl ester was given together with buthionine sulfoximine; it did occur, however, when glutathione was given together with buthionine sulfoximine. Administration of the glutathione monoester (but not of glutathione) prevented the marked decline of mitochondrial glutathione produced by buthionine sulfoximine in skeletal muscle and increased the level of glutathione in heart mitochondria to values higher than the controls. The findings suggest that glutathione monoesters may be useful agents for protection of heart and skeletal muscle against toxicity.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson M. E., Meister A. Preparation of gamma-glutamyl amino acids by chemical and enzymatic methods. Methods Enzymol. 1985;113:555–564. doi: 10.1016/s0076-6879(85)13074-0. [DOI] [PubMed] [Google Scholar]
- Anderson M. E., Powrie F., Puri R. N., Meister A. Glutathione monoethyl ester: preparation, uptake by tissues, and conversion to glutathione. Arch Biochem Biophys. 1985 Jun;239(2):538–548. doi: 10.1016/0003-9861(85)90723-4. [DOI] [PubMed] [Google Scholar]
- Boxer L. A., Oliver J. M., Spielberg S. P., Allen J. M., Schulman J. D. Protection of granulocytes by vitamin E in glutathione synthetase deficiency. N Engl J Med. 1979 Oct 25;301(17):901–905. doi: 10.1056/NEJM197910253011702. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Calvin H. I., Medvedovsky C., Worgul B. V. Near-total glutathione depletion and age-specific cataracts induced by buthionine sulfoximine in mice. Science. 1986 Aug 1;233(4763):553–555. doi: 10.1126/science.3726547. [DOI] [PubMed] [Google Scholar]
- Doroshow J. H., Locker G. Y., Myers C. E. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest. 1980 Jan;65(1):128–135. doi: 10.1172/JCI109642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith O. W. Glutathione turnover in human erythrocytes. Inhibition by buthionine sulfoximine and incorporation of glycine by exchange. J Biol Chem. 1981 May 25;256(10):4900–4904. [PubMed] [Google Scholar]
- Griffith O. W., Meister A. Glutathione: interorgan translocation, turnover, and metabolism. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5606–5610. doi: 10.1073/pnas.76.11.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith O. W., Meister A. Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4668–4672. doi: 10.1073/pnas.82.14.4668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith O. W., Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem. 1979 Aug 25;254(16):7558–7560. [PubMed] [Google Scholar]
- Hall-Craggs E. C. Ischemic muscle as a model of regeneration. Exp Neurol. 1978 Jun;60(2):393–399. doi: 10.1016/0014-4886(78)90093-6. [DOI] [PubMed] [Google Scholar]
- Hansen-Smith F. M., Van Horn D. L., Makdus M. G. Cellular response of rat quadriceps muscle to chronic dietary restrictions. J Nutr. 1978 Feb;108(2):248–255. doi: 10.1093/jn/108.2.248. [DOI] [PubMed] [Google Scholar]
- Hanzlíková V., Schiaffino S. Mitochondrial changes in ischemic skeletal muscle. J Ultrastruct Res. 1977 Jul;60(1):121–133. doi: 10.1016/s0022-5320(77)80048-8. [DOI] [PubMed] [Google Scholar]
- Lewko W. M. Glutathione levels in cultured heart cells. Influence of buthionine sulfoximine, an inhibitor of glutathione synthesis. Biochem Pharmacol. 1987 Jan 15;36(2):219–223. doi: 10.1016/0006-2952(87)90692-7. [DOI] [PubMed] [Google Scholar]
- Marklund S. A simple specific method for the determination of the hemoglobin content of tissue homogenates. Clin Chim Acta. 1979 Mar 1;92(2):229–234. doi: 10.1016/0009-8981(79)90117-7. [DOI] [PubMed] [Google Scholar]
- Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
- Meister A. Selective modification of glutathione metabolism. Science. 1983 Apr 29;220(4596):472–477. doi: 10.1126/science.6836290. [DOI] [PubMed] [Google Scholar]
- Minchinton A. I., Rojas A., Smith K. A., Soranson J. A., Shrieve D. C., Jones N. R., Bremner J. C. Glutathione depletion in tissues after administration of buthionine sulphoximine. Int J Radiat Oncol Biol Phys. 1984 Aug;10(8):1261–1264. doi: 10.1016/0360-3016(84)90329-8. [DOI] [PubMed] [Google Scholar]
- Mårtensson J. Method for determination of free and total glutathione and gamma-glutamylcysteine concentrations in human leukocytes and plasma. J Chromatogr. 1987 Sep 4;420(1):152–157. doi: 10.1016/0378-4347(87)80166-4. [DOI] [PubMed] [Google Scholar]
- Orlowski M., Richman P. G., Meister A. Isolation and properties of gamma-L-glutamylcyclotransferase from human brain. Biochemistry. 1969 Mar;8(3):1048–1055. doi: 10.1021/bi00831a036. [DOI] [PubMed] [Google Scholar]
- Puri R. N., Meister A. Transport of glutathione, as gamma-glutamylcysteinylglycyl ester, into liver and kidney. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5258–5260. doi: 10.1073/pnas.80.17.5258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richards F., 2nd, Cooper M. R., Pearce L. A., Cowan R. J., Spurr C. L. Familial spinocerebellar degeneration, hemolytic anemia, and glutathione deficiency. Arch Intern Med. 1974 Sep;134(3):534–537. [PubMed] [Google Scholar]
- Seelig G. F., Meister A. Glutathione biosynthesis; gamma-glutamylcysteine synthetase from rat kidney. Methods Enzymol. 1985;113:379–390. doi: 10.1016/s0076-6879(85)13050-8. [DOI] [PubMed] [Google Scholar]
- Smith J. E. Relationship of in vivo erythrocyte glutathione flux to the oxidized glutathione transport system. J Lab Clin Med. 1974 Mar;83(3):444–450. [PubMed] [Google Scholar]
- Tate S. S., Meister A. gamma-Glutamyl transpeptidase from kidney. Methods Enzymol. 1985;113:400–419. doi: 10.1016/s0076-6879(85)13053-3. [DOI] [PubMed] [Google Scholar]
- Wellner V. P., Anderson M. E., Puri R. N., Jensen G. L., Meister A. Radioprotection by glutathione ester: transport of glutathione ester into human lymphoid cells and fibroblasts. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4732–4735. doi: 10.1073/pnas.81.15.4732. [DOI] [PMC free article] [PubMed] [Google Scholar]