Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Jan;86(2):544–548. doi: 10.1073/pnas.86.2.544

Regulation of endocytic pH by the Na+,K+-ATPase in living cells.

C C Cain 1, D M Sipe 1, R F Murphy 1
PMCID: PMC286508  PMID: 2536168

Abstract

Acidification of endocytosed ligands destined for lysosomes is biphasic, with a rapid drop to pH 6, followed by a slow decrease to pH 5. Continuous measurements of transferrin acidification have confirmed that the pH minimum in early (presorting) endosomes is approximately pH 6. On the basis of measurements of endosomal acidification in vitro, it has been proposed that the pH in the early endosome is limited by the internalization of the Na+,K+-ATPase, which generates an interior-positive membrane potential in this compartment [Fuchs, R., Schmid, S. & Mellman, I. (1989) Proc. Natl. Acad. Sci. USA 86, 539-543]. We present two lines of evidence that strongly implicate the Na+,K+-ATPase as a major regulatory element of endocytic pH in vivo. First, ouabain, a specific inhibitor of the Na+,K+-ATPase, interferes with the regulation of acidification in early endocytic compartments. Transferrin is normally rapidly acidified to pH 6.0-6.2, followed by alkalinization during recycling. In the presence of ouabain, the minimum pH of transferrin-containing endosomes decreases from 6.0-6.2 to less than 5.3. Second, ouabain eliminates the resistance to both the growth inhibitory and vacuologenic effects of chloroquine in the lysosomal acidification defective cell line CHL60-64. The phenotype of this cell line is consistent with a defect in the removal or inactivation of the early acidification regulatory elements from the late endocytic compartments. The ouabain data suggest that the defect in this cell line is due to improper localization of the Na+,K+-ATPase. A model for pH regulation and vacuolation by weak bases is discussed.

Full text

PDF
544

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Awqati Q. Proton-translocating ATPases. Annu Rev Cell Biol. 1986;2:179–199. doi: 10.1146/annurev.cb.02.110186.001143. [DOI] [PubMed] [Google Scholar]
  2. Brown M. S., Anderson R. G., Goldstein J. L. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. doi: 10.1016/0092-8674(83)90052-1. [DOI] [PubMed] [Google Scholar]
  3. Cain C. C., Murphy R. F. A chloroquine-resistant Swiss 3T3 cell line with a defect in late endocytic acidification. J Cell Biol. 1988 Feb;106(2):269–277. doi: 10.1083/jcb.106.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cain C. C., Murphy R. F. Growth inhibition of 3T3 fibroblasts by lysosomotropic amines: correlation with effects on intravesicular pH but not vacuolation. J Cell Physiol. 1986 Oct;129(1):65–70. doi: 10.1002/jcp.1041290110. [DOI] [PubMed] [Google Scholar]
  5. Dautry-Varsat A., Ciechanover A., Lodish H. F. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2258–2262. doi: 10.1073/pnas.80.8.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuchs R., Schmid S., Mellman I. A possible role for Na+,K+-ATPase in regulating ATP-dependent endosome acidification. Proc Natl Acad Sci U S A. 1989 Jan;86(2):539–543. doi: 10.1073/pnas.86.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giard D. J., Aaronson S. A., Todaro G. J., Arnstein P., Kersey J. H., Dosik H., Parks W. P. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973 Nov;51(5):1417–1423. doi: 10.1093/jnci/51.5.1417. [DOI] [PubMed] [Google Scholar]
  8. Goldstein J. L., Brown M. S., Anderson R. G., Russell D. W., Schneider W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
  9. Klausner R. D., Ashwell G., van Renswoude J., Harford J. B., Bridges K. R. Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2263–2266. doi: 10.1073/pnas.80.8.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  11. Murphy R. F., Powers S., Cantor C. R. Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J Cell Biol. 1984 May;98(5):1757–1762. doi: 10.1083/jcb.98.5.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Murphy R. F., Tse D. B., Cantor C. R., Pernis B. Acidification of internalized class I major histocompatibility complex antigen by T lymphoblasts. Cell Immunol. 1984 Oct 15;88(2):336–342. doi: 10.1016/0008-8749(84)90166-7. [DOI] [PubMed] [Google Scholar]
  13. Ohkuma S., Poole B. Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J Cell Biol. 1981 Sep;90(3):656–664. doi: 10.1083/jcb.90.3.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Poole B., Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981 Sep;90(3):665–669. doi: 10.1083/jcb.90.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pressley T. A., Edelman I. S. Reduced ouabain inhibition of Na,K-activated adenosine triphosphatase in cultured cell recipients of the ouabain-resistance gene. J Biol Chem. 1986 Jul 25;261(21):9779–9786. [PubMed] [Google Scholar]
  17. Roederer M., Bowser R., Murphy R. F. Kinetics and temperature dependence of exposure of endocytosed material to proteolytic enzymes and low pH: evidence for a maturation model for the formation of lysosomes. J Cell Physiol. 1987 May;131(2):200–209. doi: 10.1002/jcp.1041310209. [DOI] [PubMed] [Google Scholar]
  18. Roederer M., Murphy R. F. Cell-by-cell autofluorescence correction for low signal-to-noise systems: application to epidermal growth factor endocytosis by 3T3 fibroblasts. Cytometry. 1986 Nov;7(6):558–565. doi: 10.1002/cyto.990070610. [DOI] [PubMed] [Google Scholar]
  19. Roff C. F., Fuchs R., Mellman I., Robbins A. R. Chinese hamster ovary cell mutants with temperature-sensitive defects in endocytosis. I. Loss of function on shifting to the nonpermissive temperature. J Cell Biol. 1986 Dec;103(6 Pt 1):2283–2297. doi: 10.1083/jcb.103.6.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rudnick G. ATP-driven H+ pumping into intracellular organelles. Annu Rev Physiol. 1986;48:403–413. doi: 10.1146/annurev.ph.48.030186.002155. [DOI] [PubMed] [Google Scholar]
  21. Sipe D. M., Murphy R. F. High-resolution kinetics of transferrin acidification in BALB/c 3T3 cells: exposure to pH 6 followed by temperature-sensitive alkalinization during recycling. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7119–7123. doi: 10.1073/pnas.84.20.7119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van Dyke R. W. Proton pump-generated electrochemical gradients in rat liver multivesicular bodies. Quantitation and effects of chloride. J Biol Chem. 1988 Feb 25;263(6):2603–2611. [PubMed] [Google Scholar]
  24. de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES