Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Feb;86(3):953–957. doi: 10.1073/pnas.86.3.953

Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase.

M C McGuire 1, C P Nogueira 1, C F Bartels 1, H Lightstone 1, A Hajra 1, A F Van der Spek 1, O Lockridge 1, B N La Du 1
PMCID: PMC286597  PMID: 2915989

Abstract

A point mutation in the gene for human serum cholinesterase was identified that changes Asp-70 to Gly in the atypical form of serum cholinesterase. The mutation in nucleotide 209, which changes codon 70 from GAT to GGT, was found by sequencing a genomic clone and sequencing selected regions of DNA amplified by the polymerase chain reaction. The entire coding sequences for usual and atypical cholinesterases were compared, and no other consistent base differences were found. A polymorphic site near the C terminus of the coded region was detected, but neither allele at this locus segregated consistently with the atypical trait. The nucleotide-209 mutation was detected in all five atypical cholinesterase families examined. There was complete concordance between this mutation and serum cholinesterase phenotypes for all 14 heterozygous and 6 homozygous atypical subjects tested. The mutation causes the loss of a Sau3A1 restriction site; the resulting DNA fragment length polymorphism was verified by electrophoresis of 32P-labeled DNA restriction fragments from usual and atypical subjects. Dot-blot hybridization analysis with a 19-mer allele-specific probe to the DNA amplified by the polymerase chain reaction distinguished between the usual and atypical genotypes. We conclude that the Asp-70----Gly mutation (acidic to neutral amino acid substitution) accounts for reduced affinity of atypical cholinesterase for choline esters and that Asp-70 must be an important component of the anionic site. Heterogeneity in atypical alleles may exist, but the Asp-70 point mutation may represent an appreciable portion of the atypical gene pool.

Full text

PDF
953

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown S. S., Kalow W., Pilz W., Whittaker M., Woronick C. L. The plasma cholinesteerases: a new perspective. Adv Clin Chem. 1981;22:1–123. doi: 10.1016/s0065-2423(08)60046-3. [DOI] [PubMed] [Google Scholar]
  2. DAVIES R. O., MARTON A. V., KALOW W. The action of normal and atypical cholinesterase of human serum upon a series of esters of choline. Can J Biochem Physiol. 1960 Jun;38:545–551. [PubMed] [Google Scholar]
  3. Das P. K. Purification of two unusual serum cholinesterase variants (ChDI and ChFI) and comparison of their properties with those of normals. Enzyme. 1974;18(5):279–292. doi: 10.1159/000459437. [DOI] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  5. Goedde H. W., Agarwal D. P. Pseudocholinesterase variation. Hum Genet Suppl. 1978;(1):45–55. doi: 10.1007/978-3-642-67179-1_7. [DOI] [PubMed] [Google Scholar]
  6. Goedde H. W., Held K. R., Altland K. Hydrolysis of succinyldicholine and succinylmonocholine in human serum. Mol Pharmacol. 1968 May;4(3):274–287. [PubMed] [Google Scholar]
  7. HARRIS H., WHITTAKER M. Differential inhibition of human serum cholinesterase with fluoride: recognition of two new phenotypes. Nature. 1961 Jul 29;191:496–498. doi: 10.1038/191496a0. [DOI] [PubMed] [Google Scholar]
  8. Janssen J. W., Lyons J., Steenvoorden A. C., Seliger H., Bartram C. R. Concurrent mutations in two different ras genes in acute myelocytic leukemias. Nucleic Acids Res. 1987 Jul 24;15(14):5669–5680. doi: 10.1093/nar/15.14.5669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KALOW W., GENEST K. A method for the detection of atypical forms of human serum cholinesterase; determination of dibucaine numbers. Can J Biochem Physiol. 1957 Jun;35(6):339–346. doi: 10.1139/y57-041. [DOI] [PubMed] [Google Scholar]
  10. KALOW W., GUNN D. R. Some statistical data on atypical cholinesterase of human serum. Ann Hum Genet. 1959 Jul;23:239–250. doi: 10.1111/j.1469-1809.1959.tb01467.x. [DOI] [PubMed] [Google Scholar]
  11. Kidd V. J., Wallace R. B., Itakura K., Woo S. L. alpha 1-antitrypsin deficiency detection by direct analysis of the mutation in the gene. Nature. 1983 Jul 21;304(5923):230–234. doi: 10.1038/304230a0. [DOI] [PubMed] [Google Scholar]
  12. Lockridge O., Bartels C. F., Vaughan T. A., Wong C. K., Norton S. E., Johnson L. L. Complete amino acid sequence of human serum cholinesterase. J Biol Chem. 1987 Jan 15;262(2):549–557. [PubMed] [Google Scholar]
  13. Lockridge O., La Du B. N. Amino acid sequence of the active site of human serum cholinesterase from usual, atypical, and atypical-silent genotypes. Biochem Genet. 1986 Jun;24(5-6):485–498. doi: 10.1007/BF00499101. [DOI] [PubMed] [Google Scholar]
  14. Lockridge O., La Du B. N. Comparison of atypical and usual human serum cholinesterase. Purification, number of active sites, substrate affinity, and turnover number. J Biol Chem. 1978 Jan 25;253(2):361–366. [PubMed] [Google Scholar]
  15. McTiernan C., Adkins S., Chatonnet A., Vaughan T. A., Bartels C. F., Kott M., Rosenberry T. L., La Du B. N., Lockridge O. Brain cDNA clone for human cholinesterase. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6682–6686. doi: 10.1073/pnas.84.19.6682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muensch H., Yoshida A., Altland K., Jensen W., Goedde H. W. Structural difference at the active site of dibucaine resistant variant of human plasma cholinesterase. Am J Hum Genet. 1978 May;30(3):302–307. [PMC free article] [PubMed] [Google Scholar]
  17. Neitlich H. W. Increased plasma cholinesterase activity and succinylcholine resistance: a genetic variant. J Clin Invest. 1966 Mar;45(3):380–387. doi: 10.1172/JCI105353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Prody C. A., Zevin-Sonkin D., Gnatt A., Goldberg O., Soreq H. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3555–3559. doi: 10.1073/pnas.84.11.3555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  21. Standard K. Promoting health in the Caribbean. Jamaican Nurse. 1966 Aug;6(2):28–30. [PubMed] [Google Scholar]
  22. Viby-Mogensen J., Hanel H. K. Prolonged apnoea after suxamethonium: an analysis of the first 225 cases reported to the Danish Cholinesterase Research Unit. Acta Anaesthesiol Scand. 1978;22(4):371–380. doi: 10.1111/j.1399-6576.1978.tb01313.x. [DOI] [PubMed] [Google Scholar]
  23. Wallace R. B., Johnson M. J., Hirose T., Miyake T., Kawashima E. H., Itakura K. The use of synthetic oligonucleotides as hybridization probes. II. Hybridization of oligonucleotides of mixed sequence to rabbit beta-globin DNA. Nucleic Acids Res. 1981 Feb 25;9(4):879–894. doi: 10.1093/nar/9.4.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yamato K., Huang I. Y., Muensch H., Yoshida A., Goedde H. W., Agarwal D. P. Amino acid sequence of the active site of human pseudocholinesterase. Biochem Genet. 1983 Feb;21(1-2):135–145. doi: 10.1007/BF02395397. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES