Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Feb;86(3):1098–1102. doi: 10.1073/pnas.86.3.1098

Retinal melatonin is metabolized within the eye of xenopus laevis.

G M Cahill 1, J C Besharse 1
PMCID: PMC286629  PMID: 2492661

Abstract

Retinal synthesis of melatonin, a potent modulator of rhythmic retinal processes, is elevated at night as a result of regulation by a circadian clock. Despite high nocturnal synthetic capacity, both melatonin content and release are low in the retina of the frog Xenopus laevis. We report here that cultured eyecups from Xenopus have the capacity for rapid metabolic breakdown of melatonin. Pharmacological analysis indicates that the initial step in this degradation pathway is deacetylation of melatonin by the enzyme aryl acylamidase (aryl-acylamide amidohydrolase, EC 3.5.1.13). This produces 5-methoxytryptamine, which is then deaminated by monoamine oxidase [amine:oxygen oxidoreductase (deaminating) (flavin-containing), EC 1.4.3.4], producing 5-methoxyindoleacetic acid and 5-methoxytryptophol. Inhibition of aryl acylamidase with eserine dramatically increases the release of endogenous melatonin by eyecups cultured at night, indicating that this pathway is the normal fate of retinal melatonin. Metabolism within the eye suggests a local neuromodulatory role for retinal melatonin, in contrast to the hormonal role of pineal melatonin.

Full text

PDF
1098

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balemans M. G., Pévet P., van Benthem J., Haldar-Misra C., Smith I., Hendriks H. Day/night rhythmicity in the methylating capacities for different 5-hydroxyindoles in the pineal, the retina and the Harderian gland of the golden hamster (Mesocricetus auratus) during the annual seasons. J Neural Transm. 1983;56(1):53–72. doi: 10.1007/BF01243374. [DOI] [PubMed] [Google Scholar]
  2. Besharse J. C., Dunis D. A. Methoxyindoles and photoreceptor metabolism: activation of rod shedding. Science. 1983 Mar 18;219(4590):1341–1343. doi: 10.1126/science.6828862. [DOI] [PubMed] [Google Scholar]
  3. Besharse J. C., Dunis D. A. Rod photoreceptor disc shedding in eye cups: relationship to bicarbonate and amino acids. Exp Eye Res. 1983 Apr;36(4):567–579. doi: 10.1016/0014-4835(83)90051-9. [DOI] [PubMed] [Google Scholar]
  4. Besharse J. C., Iuvone P. M. Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature. 1983 Sep 8;305(5930):133–135. doi: 10.1038/305133a0. [DOI] [PubMed] [Google Scholar]
  5. Binkley S., Hryshchyshyn M., Reilly K. N-acetyltransferase activity responds to environmental lighting in the eye as well as in the pineal gland. Nature. 1979 Oct 11;281(5731):479–481. doi: 10.1038/281479a0. [DOI] [PubMed] [Google Scholar]
  6. Chèze G., Ali M. A. Rôle de l'épiphyse dans la migration du pigment épithélial rétinien chez quelques Téléostéens. Can J Zool. 1976 Apr;54(4):475–481. [PubMed] [Google Scholar]
  7. DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
  8. Dubocovich M. L., Lucas R. C., Takahashi J. S. Light-dependent regulation of dopamine receptors in mammalian retina. Brain Res. 1985 Jun 3;335(2):321–325. doi: 10.1016/0006-8993(85)90485-8. [DOI] [PubMed] [Google Scholar]
  9. Hamm H. E., Menaker M. Retinal rhythms in chicks: circadian variation in melantonin and serotonin N-acetyltransferase activity. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4998–5002. doi: 10.1073/pnas.77.8.4998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hsu L. L. Brain aryl acylamidase. Int J Biochem. 1982;14(12):1037–1042. doi: 10.1016/0020-711x(82)90157-4. [DOI] [PubMed] [Google Scholar]
  11. Iuvone P. M., Besharse J. C. Regulation of indoleamine N-acetyltransferase activity in the retina: effects of light and dark, protein synthesis inhibitors and cyclic nucleotide analogs. Brain Res. 1983 Aug 22;273(1):111–119. doi: 10.1016/0006-8993(83)91099-5. [DOI] [PubMed] [Google Scholar]
  12. KOPIN I. J., PARE C. M., AXELROD J., WEISSBACH H. The fate of melatonin in animals. J Biol Chem. 1961 Nov;236:3072–3075. [PubMed] [Google Scholar]
  13. KRAUS-RUPPERT R., LEMBECK F. DIE WIRKUNG VON MELATONIN AUF DIE PIGMENTZELLEN DER RETINA VON FROESCHEN. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Jun 2;284:160–168. [PubMed] [Google Scholar]
  14. KVEDER S., McISAAC W. M. The metabolism of melatonin (N-acetyl-5-methoxytryptamine) and 5-methoxytryptamine. J Biol Chem. 1961 Dec;236:3214–3220. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Oommen A., Balasubramanian A. S. Aryl acylamidase of monkey brain and liver: response to inhibitors and relationship to acetylcholinesterase. Biochem Pharmacol. 1978 Mar 15;27(6):891–895. doi: 10.1016/0006-2952(78)90414-8. [DOI] [PubMed] [Google Scholar]
  17. Pang S. F., Yew D. T. Pigment aggregation by melatonin in the retinal pigment epithelium and choroid of guinea-pigs, Caviaporcellus. Experientia. 1979 Feb 15;35(2):231–233. doi: 10.1007/BF01920634. [DOI] [PubMed] [Google Scholar]
  18. Pierce M. E., Besharse J. C. Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length. J Gen Physiol. 1985 Nov;86(5):671–689. doi: 10.1085/jgp.86.5.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reiter R. J., Richardson B. A., Matthews S. A., Lane S. J., Ferguson B. N. Rhythms in immunoreactive melatonin in the retina and Harderian gland of rats: persistence after pinealectomy. Life Sci. 1983 Mar 14;32(11):1229–1236. doi: 10.1016/0024-3205(83)90192-3. [DOI] [PubMed] [Google Scholar]
  20. Reppert S. M., Sagar S. M. Characterization of the day-night variation of retinal melatonin content in the chick. Invest Ophthalmol Vis Sci. 1983 Mar;24(3):294–300. [PubMed] [Google Scholar]
  21. Rogawski M. A., Roth R. H., Aghajanian G. K. Melatonin: deacetylation to 5-methoxytryptamine by liver but not brain aryl acylamidase. J Neurochem. 1979 Apr;32(4):1219–1226. doi: 10.1111/j.1471-4159.1979.tb11049.x. [DOI] [PubMed] [Google Scholar]
  22. Rollag M. D., Niswender G. D. Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different lighting regimens. Endocrinology. 1976 Feb;98(2):482–489. doi: 10.1210/endo-98-2-482. [DOI] [PubMed] [Google Scholar]
  23. Takahashi J. S., Hamm H., Menaker M. Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2319–2322. doi: 10.1073/pnas.77.4.2319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Underwood H., Binkley S., Siopes T., Mosher K. Melatonin rhythms in the eyes, pineal bodies, and blood of Japanese quail (Coturnix coturnix japonica). Gen Comp Endocrinol. 1984 Oct;56(1):70–81. doi: 10.1016/0016-6480(84)90063-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES