Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Feb;86(4):1259–1263. doi: 10.1073/pnas.86.4.1259

Respiratory burst oxidase of fertilization.

J W Heinecke 1, B M Shapiro 1
PMCID: PMC286667  PMID: 2537493

Abstract

Partially reduced oxygen species are toxic, yet sea urchin eggs synthesize H2O2 in a "respiratory burst" at fertilization, as an extracellular oxidant to crosslink their protective surface envelopes. To study the biochemical mechanism for H2O2 production, we have isolated an NADPH-specific oxidase fraction from homogenates of unfertilized Strongylocentrotus purpuratus eggs that produces H2O2 when stimulated with Ca2+ and MgATP2-. Concentrations of free Ca2+ previously implicated in regulation of egg activation modulate the activity of the oxidase. Inhibitors were used to test the relevance of this oxidase to the respiratory burst of fertilization. Procaine, two phenothiazines, and N-ethylmaleimide (but not iodoacetamide) inhibited H2O2 production by the oxidase fraction and oxygen consumption by activated eggs. The ATP requirement suggested that protein kinase activity might regulate the respiratory burst of fertilization; consonant with this hypothesis, H-7 and staurosporine were inhibitory. The respiratory burst oxidase of fertilization is an NADPH:O2 oxidoreductase that appears to be regulated by a protein kinase; although it bears a remarkable resemblance to the neutrophil oxidase, unlike the latter it does not form O2- as its initial product.

Full text

PDF
1259

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Whitaker M. J. Influence of ATP and calcium on the cortical reaction in sea urchin eggs. Nature. 1978 Nov 30;276(5687):513–515. doi: 10.1038/276513a0. [DOI] [PubMed] [Google Scholar]
  2. Boveris A., Martino E., Stoppani A. O. Evaluation of the horseradish peroxidase-scopoletin method for the measurement of hydrogen peroxide formation in biological systems. Anal Biochem. 1977 May 15;80(1):145–158. doi: 10.1016/0003-2697(77)90634-0. [DOI] [PubMed] [Google Scholar]
  3. Epel D., Patton C., Wallace R. W., Cheung W. Y. Calmodulin activates NAD kinase of sea urchin eggs: an early event of fertilization. Cell. 1981 Feb;23(2):543–549. doi: 10.1016/0092-8674(81)90150-1. [DOI] [PubMed] [Google Scholar]
  4. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  5. Foerder C. A., Klebanoff S. J., Shapiro B. M. Hydrogen peroxide production, chemiluminescence, and the respiratory burst of fertilization: interrelated events in early sea urchin development. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3183–3187. doi: 10.1073/pnas.75.7.3183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Foerder C. A., Shapiro B. M. Release of ovoperoxidase from sea urchin eggs hardens the fertilization membrane with tyrosine crosslinks. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4214–4218. doi: 10.1073/pnas.74.10.4214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heath R. L., Tappel A. L. A new sensitive assay for the measurement of hydroperoxides. Anal Biochem. 1976 Nov;76(50):184–191. doi: 10.1016/0003-2697(76)90277-3. [DOI] [PubMed] [Google Scholar]
  8. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  9. Johnson C. H., Epel D. Intracellular pH of sea urchin eggs measured by the dimethyloxazolidinedione (DMO) method. J Cell Biol. 1981 May;89(2):284–291. doi: 10.1083/jcb.89.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson J. D., Epel D. Intracellular pH and activation of sea urchin eggs after fertilisation. Nature. 1976 Aug 19;262(5570):661–664. doi: 10.1038/262661a0. [DOI] [PubMed] [Google Scholar]
  11. Klebanoff S. J., Foerder C. A., Eddy E. M., Shapiro B. M. Metabolic similarities between fertilization and phagocytosis. Conservation of a peroxidatic mechanism. J Exp Med. 1979 Apr 1;149(4):938–953. doi: 10.1084/jem.149.4.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mori T., Takai Y., Minakuchi R., Yu B., Nishizuka Y. Inhibitory action of chlorpromazine, dibucaine, and other phospholipid-interacting drugs on calcium-activated, phospholipid-dependent protein kinase. J Biol Chem. 1980 Sep 25;255(18):8378–8380. [PubMed] [Google Scholar]
  13. Schächtele C., Seifert R., Osswald H. Stimulus-dependent inhibition of platelet aggregation by the protein kinase C inhibitors polymyxin B, H-7 and staurosporine. Biochem Biophys Res Commun. 1988 Feb 29;151(1):542–547. doi: 10.1016/0006-291x(88)90628-6. [DOI] [PubMed] [Google Scholar]
  14. Shen S. S., Steinhardt R. A. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature. 1978 Mar 16;272(5650):253–254. doi: 10.1038/272253a0. [DOI] [PubMed] [Google Scholar]
  15. Shen S. S., Steinhardt R. A. Intracellular pH and the sodium requirement at fertilisation. Nature. 1979 Nov 1;282(5734):87–89. doi: 10.1038/282087a0. [DOI] [PubMed] [Google Scholar]
  16. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  17. Steinhardt R. A., Epel D. Activation of sea-urchin eggs by a calcium ionophore. Proc Natl Acad Sci U S A. 1974 May;71(5):1915–1919. doi: 10.1073/pnas.71.5.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steinhardt R., Zucker R., Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977 Jul 1;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Storer A. C., Cornish-Bowden A. Concentration of MgATP2- and other ions in solution. Calculation of the true concentrations of species present in mixtures of associating ions. Biochem J. 1976 Oct 1;159(1):1–5. doi: 10.1042/bj1590001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Swann K., Whitaker M. Stimulation of the Na/H exchanger of sea urchin eggs by phorbol ester. Nature. 1985 Mar 21;314(6008):274–277. doi: 10.1038/314274a0. [DOI] [PubMed] [Google Scholar]
  21. Vacquier V. D. The isolation of intact cortical granules from sea urchin eggs: calcium lons trigger granule discharge. Dev Biol. 1975 Mar;43(1):62–74. doi: 10.1016/0012-1606(75)90131-1. [DOI] [PubMed] [Google Scholar]
  22. Weidman P. J., Kay E. S., Shapiro B. M. Assembly of the sea urchin fertilization membrane: isolation of proteoliaisin, a calcium-dependent ovoperoxidase binding protein. J Cell Biol. 1985 Mar;100(3):938–946. doi: 10.1083/jcb.100.3.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weiss B., Prozialeck W., Cimino M., Barnette M. S., Wallace T. L. Pharmacological regulation of calmodulin. Ann N Y Acad Sci. 1980;356:319–345. doi: 10.1111/j.1749-6632.1980.tb29621.x. [DOI] [PubMed] [Google Scholar]
  24. Winkler M. M., Grainger J. L. Mechanism of action of NH4Cl and other weak bases in the activation of sea urchin eggs. Nature. 1978 Jun 15;273(5663):536–538. doi: 10.1038/273536a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES