Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Feb;86(4):1343–1347. doi: 10.1073/pnas.86.4.1343

Identity of human B-cell line cytotoxic lymphokine with tumor necrosis factor type beta.

H I Yamanaka 1, A Karpas 1
PMCID: PMC286686  PMID: 2784005

Abstract

A humoral cytotoxic protein that is spontaneously produced by a cloned human lymphoblastoid cell line (K160b) was partially purified by a simple three-step column chromatography procedure and NaDodSO4/polyacrylamide gel electrophoresis. Proteins were electrically blotted onto a polyvinylidene difluoride membrane, and a band of the cytotoxic protein was excised after staining with Coomassie brilliant blue. Direct analysis of the amino acid sequence of this protein showed the primary structure of its N-terminal region was identical to that of natural tumor necrosis factor type beta (TNF-beta). The 24-kDa molecular mass of the cytotoxic protein, determined by NaDodSO4/PAGE, and its elution profiles from various types of columns correlated with those of natural TNF-beta. Specific activity of the cytotoxicity, standardized with recombinant TNF-beta, was comparable to that of the purified factor. However, polyclonal antiserum to recombinant TNF-beta failed to react with the purified factor. Since recombinant TNF-beta, when used in patients, causes unacceptable side effects, which may be due to absence of glycosylation, the cell line K160b could be a useful source of natural TNF-beta for clinical trials.

Full text

PDF
1343

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal B. B., Henzel W. J., Moffat B., Kohr W. J., Harkins R. N. Primary structure of human lymphotoxin derived from 1788 lymphoblastoid cell line. J Biol Chem. 1985 Feb 25;260(4):2334–2344. [PubMed] [Google Scholar]
  2. Aggarwal B. B. Human lymphotoxin. Methods Enzymol. 1985;116:441–448. doi: 10.1016/s0076-6879(85)16035-0. [DOI] [PubMed] [Google Scholar]
  3. Aggarwal B. B., Kohr W. J., Hass P. E., Moffat B., Spencer S. A., Henzel W. J., Bringman T. S., Nedwin G. E., Goeddel D. V., Harkins R. N. Human tumor necrosis factor. Production, purification, and characterization. J Biol Chem. 1985 Feb 25;260(4):2345–2354. [PubMed] [Google Scholar]
  4. Aggarwal B. B., Moffat B., Harkins R. N. Human lymphotoxin. Production by a lymphoblastoid cell line, purification, and initial characterization. J Biol Chem. 1984 Jan 10;259(1):686–691. [PubMed] [Google Scholar]
  5. Averbook B. J., Yamamoto R. S., Ulich T. R., Jeffes E. W., Masunaka I., Granger G. A. Purified native and recombinant human alpha lymphotoxin [tumor necrosis factor (TNF)-beta] induces inflammatory reactions in normal skin. J Clin Immunol. 1987 Jul;7(4):333–340. doi: 10.1007/BF00915556. [DOI] [PubMed] [Google Scholar]
  6. Bertoglio J. H., Rimsky L., Kleinerman E. S., Lachman L. B. B-cell line-derived interleukin 1 is cytotoxic for melanoma cells and promotes the proliferation of an astrocytoma cell line. Lymphokine Res. 1987 Spring;6(2):83–91. [PubMed] [Google Scholar]
  7. Feinman R., Henriksen-DeStefano D., Tsujimoto M., Vilcek J. Tumor necrosis factor is an important mediator of tumor cell killing by human monocytes. J Immunol. 1987 Jan 15;138(2):635–640. [PubMed] [Google Scholar]
  8. Figari I. S., Mori N. A., Palladino M. A., Jr Regulation of neutrophil migration and superoxide production by recombinant tumor necrosis factors-alpha and -beta: comparison to recombinant interferon-gamma and interleukin-1 alpha. Blood. 1987 Oct;70(4):979–984. [PubMed] [Google Scholar]
  9. Granger G. A., Kolb W. P. Lymphocyte in vitro cytotoxicity: mechanisms of immune and non-immune small lymphocyte mediated target L cell destruction. J Immunol. 1968 Jul;101(1):111–120. [PubMed] [Google Scholar]
  10. Gray P. W., Aggarwal B. B., Benton C. V., Bringman T. S., Henzel W. J., Jarrett J. A., Leung D. W., Moffat B., Ng P., Svedersky L. P. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis activity. Nature. 1984 Dec 20;312(5996):721–724. doi: 10.1038/312721a0. [DOI] [PubMed] [Google Scholar]
  11. Karpas A. A human haemic cell line capable of cellular and humoral killing of normal and malignant cells. Br J Cancer. 1977 Feb;35(2):152–160. doi: 10.1038/bjc.1977.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karpas A. A humoral cytotoxic substance produced by a human killer cell line. Br J Cancer. 1977 Oct;36(4):437–445. doi: 10.1038/bjc.1977.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karpas A. Human B-cell cytotoxic lymphokine priority. Nature. 1985 Feb 21;313(6004):636–636. doi: 10.1038/313636b0. [DOI] [PubMed] [Google Scholar]
  14. Kehrl J. H., Alvarez-Mon M., Delsing G. A., Fauci A. S. Lymphotoxin is an important T cell-derived growth factor for human B cells. Science. 1987 Nov 20;238(4830):1144–1146. doi: 10.1126/science.3500512. [DOI] [PubMed] [Google Scholar]
  15. Kelker H. C., Oppenheim J. D., Stone-Wolff D., Henriksen-DeStefano D., Aggarwal B. B., Stevenson H. C., Vilcek J. Characterization of human tumor necrosis factor produced by peripheral blood monocytes and its separation from lymphotoxin. Int J Cancer. 1985 Jul 15;36(1):69–73. doi: 10.1002/ijc.2910360112. [DOI] [PubMed] [Google Scholar]
  16. Kobayashi M., Plunkett J. M., Masunaka I. K., Yamamoto R. S., Granger G. A. The human LT system. XII. Purification and functional studies of LT and "TNF-like" LT forms from a continuous human T cell line. J Immunol. 1986 Sep 15;137(6):1885–1892. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Matthews N. Production of an anti-tumour cytotoxin by human monocytes: comparison of endotoxin, interferons and other agents as inducers. Br J Cancer. 1982 Apr;45(4):615–617. doi: 10.1038/bjc.1982.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  20. Nedwin G. E., Naylor S. L., Sakaguchi A. Y., Smith D., Jarrett-Nedwin J., Pennica D., Goeddel D. V., Gray P. W. Human lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization. Nucleic Acids Res. 1985 Sep 11;13(17):6361–6373. doi: 10.1093/nar/13.17.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neumann H., Karpas A. Purification and physicochemical characterization of a human cytotoxic factor produced by a human haemic cell line. Biochem J. 1981 Mar 15;194(3):847–856. doi: 10.1042/bj1940847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ortaldo J. R., Ransom J. R., Sayers T. J., Herberman R. B. Analysis of cytostatic/cytotoxic lymphokines: relationship of natural killer cytotoxic factor to recombinant lymphotoxin, recombinant tumor necrosis factor, and leukoregulin. J Immunol. 1986 Nov 1;137(9):2857–2863. [PubMed] [Google Scholar]
  23. Pujol-Borrell R., Todd I., Doshi M., Bottazzo G. F., Sutton R., Gray D., Adolf G. R., Feldmann M. HLA class II induction in human islet cells by interferon-gamma plus tumour necrosis factor or lymphotoxin. Nature. 1987 Mar 19;326(6110):304–306. doi: 10.1038/326304a0. [DOI] [PubMed] [Google Scholar]
  24. Rademacher T. W., Parekh R. B., Dwek R. A. Glycobiology. Annu Rev Biochem. 1988;57:785–838. doi: 10.1146/annurev.bi.57.070188.004033. [DOI] [PubMed] [Google Scholar]
  25. Ransom J. H., Evans C. H., McCabe R. P., Pomato N., Heinbaugh J. A., Chin M., Hanna M. G., Jr Leukoregulin, a direct-acting anticancer immunological hormone that is distinct from lymphotoxin and interferon. Cancer Res. 1985 Feb;45(2):851–862. [PubMed] [Google Scholar]
  26. Rubin B. Y., Anderson S. L., Sullivan S. A., Williamson B. D., Carswell E. A., Old L. J. Purification and characterization of a human tumor necrosis factor from the LuKII cell line. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6637–6641. doi: 10.1073/pnas.82.19.6637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sawada J. I., Shioiri-Nakano K., Osawa T. Purification and characterization of guinea pig lymphotoxin produced by lymph node cells stimulated by phytohemagglutinin. Transplantation. 1975 Apr;19(4):335–342. doi: 10.1097/00007890-197504000-00009. [DOI] [PubMed] [Google Scholar]
  28. Stashenko P., Dewhirst F. E., Peros W. J., Kent R. L., Ago J. M. Synergistic interactions between interleukin 1, tumor necrosis factor, and lymphotoxin in bone resorption. J Immunol. 1987 Mar 1;138(5):1464–1468. [PubMed] [Google Scholar]
  29. Tyring S., Klimpel G. R., Fleischmann W. R., Jr, Baron S. Direct cytolysis by partially-purified preparations of immune interferon. Int J Cancer. 1982 Jul 15;30(1):59–64. doi: 10.1002/ijc.2910300111. [DOI] [PubMed] [Google Scholar]
  30. Ulich T. R., del Castillo J., Keys M., Granger G. A. Recombinant human alpha lymphotoxin (tumor necrosis factor-beta) induces peripheral neutrophilia and lymphopenia in the rat. Am J Pathol. 1987 Jul;128(1):5–12. [PMC free article] [PubMed] [Google Scholar]
  31. Weitzen M. L., Yamamoto R. S., Granger G. A. Identification of human lymphocyte-derived lymphotoxins with binding and cell-lytic activity on NK-sensitive cell lines in vitro. Cell Immunol. 1983 Apr 1;77(1):30–41. doi: 10.1016/0008-8749(83)90004-7. [DOI] [PubMed] [Google Scholar]
  32. Wong G. H., Goeddel D. V. Tumour necrosis factors alpha and beta inhibit virus replication and synergize with interferons. 1986 Oct 30-Nov 5Nature. 323(6091):819–822. doi: 10.1038/323819a0. [DOI] [PubMed] [Google Scholar]
  33. Wright S. C., Weitzen M. L., Kahle R., Granger G. A., Bonavida B. Studies on the mechanism of natural killer cytotoxicity. II. coculture of human PBL with NK-sensitive or resistant cell lines stimulates release of natural killer cytotoxic factors (NKCF) selectively cytotoxic to NK-sensitive target cells. J Immunol. 1983 May;130(5):2479–2483. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES