Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Feb;86(4):1411–1415. doi: 10.1073/pnas.86.4.1411

Concanavalin A selectively reduces desensitization of mammalian neuronal quisqualate receptors.

M L Mayer 1, L Vyklicky Jr 1
PMCID: PMC286701  PMID: 2537497

Abstract

A fast perfusion system was used to apply excitatory amino acids to embryonic hippocampal neurons grown in dissociated culture and voltage clamped in the whole-cell recording configuration. Responses to quisqualic acid and DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA; a potent quisqualate-like agonist) showed rapid desensitization: at 100 microM the peak inward current declined to a plateau response on average 0.2 times the peak response (mean time constant, 30 ms). Responses to L-aspartic acid and N-methyl-D-aspartic acid also showed desensitization: at 100 microM, when recorded in Mg-free solution with 0.3 microM glycine, the peak inward current declined to a plateau value 0.5 times the peak, but with a time constant of desensitization (average, 248 ms) one order of magnitude slower than desensitization of responses to quisqualate. Responses to kainate and domoate (agonists at kainic acid receptors) did not show appreciable desensitization. Responses to L-glutamate and 5-Br-willardine (a potent non-NMDA receptor agonist), recorded in glycine-free solution with 1 mM Mg to suppress N-methyl-D-aspartic acid receptor activity, showed similar rapid desensitization to AMPA and quisqualate, but occurred with less depression of the peak current. The lectin concanavalin A (Con A) reduced desensitization at quisqualate receptors, with no effect on responses to kainate or N-methyl-D-aspartic acid. The effect of Con A developed slowly (average time constant at 2.5 microM, 250 s) but at steady state Con A increased the plateau current evoked by 100 microM quisqualate to 13 times control. Succinyl-Con A produced only a small reduction of desensitization to quisqualate, approximately 10% of that produced by native Con A. Con A did not change the decay time constant of fast excitatory synaptic currents evoked by stimulation of presynaptic neurons, although the peak synaptic current decreased after treatment with lectin. Con A was also without effect on the block of responses to kainate produced by coapplication of quisqualate.

Full text

PDF
1411

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R. A study of desensitization using voltage clamp. Pflugers Arch. 1975 Oct 28;360(2):135–144. doi: 10.1007/BF00580536. [DOI] [PubMed] [Google Scholar]
  2. Akaike N., Kaneda M., Hori N., Krishtal O. A. Blockade of N-methyl-D-aspartate response in enzyme-treated rat hippocampal neurons. Neurosci Lett. 1988 Apr 22;87(1-2):75–79. doi: 10.1016/0304-3940(88)90148-6. [DOI] [PubMed] [Google Scholar]
  3. Ascher P., Nowak L. Quisqualate- and kainate-activated channels in mouse central neurones in culture. J Physiol. 1988 May;399:227–245. doi: 10.1113/jphysiol.1988.sp017077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Collins G. G., Surtees L. "Desensitization" of excitatory amino acid responses in the rat olfactory cortex. Neuropharmacology. 1986 Mar;25(3):231–240. doi: 10.1016/0028-3908(86)90245-5. [DOI] [PubMed] [Google Scholar]
  5. Cull-Candy S. G., Howe J. R., Ogden D. C. Noise and single channels activated by excitatory amino acids in rat cerebellar granule neurones. J Physiol. 1988 Jun;400:189–222. doi: 10.1113/jphysiol.1988.sp017117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dudel J., Franke C., Hatt H., Ramsey R. L., Usherwood P. N. Rapid activation and desensitization by glutamate of excitatory, cation-selective channels in locust muscle. Neurosci Lett. 1988 May 16;88(1):33–38. doi: 10.1016/0304-3940(88)90311-4. [DOI] [PubMed] [Google Scholar]
  7. Foster A. C., Fagg G. E. Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res. 1984 May;319(2):103–164. doi: 10.1016/0165-0173(84)90020-1. [DOI] [PubMed] [Google Scholar]
  8. Franke C., Hatt H., Dudel J. Liquid filament switch for ultra-fast exchanges of solutions at excised patches of synaptic membrane of crayfish muscle. Neurosci Lett. 1987 Jun 15;77(2):199–204. doi: 10.1016/0304-3940(87)90586-6. [DOI] [PubMed] [Google Scholar]
  9. Honoré T., Lauridsen J., Krogsgaard-Larsen P. The binding of [3H]AMPA, a structural analogue of glutamic acid, to rat brain membranes. J Neurochem. 1982 Jan;38(1):173–178. doi: 10.1111/j.1471-4159.1982.tb10868.x. [DOI] [PubMed] [Google Scholar]
  10. Ishida A. T., Neyton J. Quisqualate and L-glutamate inhibit retinal horizontal-cell responses to kainate. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1837–1841. doi: 10.1073/pnas.82.6.1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987 Feb 5;325(6104):529–531. doi: 10.1038/325529a0. [DOI] [PubMed] [Google Scholar]
  12. Kehoe J. Transformation by concanavalin A of the response of molluscan neurones to L-glutamate. Nature. 1978 Aug 31;274(5674):866–869. doi: 10.1038/274866a0. [DOI] [PubMed] [Google Scholar]
  13. Kiskin N. I., Krishtal O. A., Tsyndrenko AYa Excitatory amino acid receptors in hippocampal neurons: kainate fails to desensitize them. Neurosci Lett. 1986 Jan 30;63(3):225–230. doi: 10.1016/0304-3940(86)90360-5. [DOI] [PubMed] [Google Scholar]
  14. Lindstrom J., Anholt R., Einarson B., Engel A., Osame M., Montal M. Purification of acetylcholine receptors, reconstitution into lipid vesicles, and study of agonist-induced cation channel regulation. J Biol Chem. 1980 Sep 10;255(17):8340–8350. [PubMed] [Google Scholar]
  15. Mathers D. A. The influence of concanavalin A on glutamate-induced current fluctuations in locust muscle fibres. J Physiol. 1981 Mar;312:1–8. doi: 10.1113/jphysiol.1981.sp013611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mathers D. A., Usherwood P. N. Concanavalin A blocks desensitisation of glutamate receptors on insect muscle fibres. Nature. 1976 Feb 5;259(5542):409–411. doi: 10.1038/259409a0. [DOI] [PubMed] [Google Scholar]
  17. Mayer M. L., Westbrook G. L., Guthrie P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984 May 17;309(5965):261–263. doi: 10.1038/309261a0. [DOI] [PubMed] [Google Scholar]
  18. Mayer M. L., Westbrook G. L. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol. 1987 Dec;394:501–527. doi: 10.1113/jphysiol.1987.sp016883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mayer M. L., Westbrook G. L. The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture. J Physiol. 1985 Apr;361:65–90. doi: 10.1113/jphysiol.1985.sp015633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mayer M. L., Westbrook G. L. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol. 1987;28(3):197–276. doi: 10.1016/0301-0082(87)90011-6. [DOI] [PubMed] [Google Scholar]
  21. Monaghan D. T., Yao D., Cotman C. W. L-[3H]Glutamate binds to kainate-, NMDA- and AMPA-sensitive binding sites: an autoradiographic analysis. Brain Res. 1985 Aug 12;340(2):378–383. doi: 10.1016/0006-8993(85)90936-9. [DOI] [PubMed] [Google Scholar]
  22. Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
  23. O'Brien R. J., Fischbach G. D. Characterization of excitatory amino acid receptors expressed by embryonic chick motoneurons in vitro. J Neurosci. 1986 Nov;6(11):3275–3283. doi: 10.1523/JNEUROSCI.06-11-03275.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rainbow T. C., Wieczorek C. M., Halpain S. Quantitative autoradiography of binding sites for [3H]AMPA, a structural analogue of glutamic acid. Brain Res. 1984 Aug 20;309(1):173–177. doi: 10.1016/0006-8993(84)91025-4. [DOI] [PubMed] [Google Scholar]
  25. Shinozaki H., Ishida M. Pharmacological distinction between the excitatory junctional potential and the glutamate potential revealed by concanavalin A at the crayfish neuromuscular junction. Brain Res. 1979 Feb 9;161(3):493–501. doi: 10.1016/0006-8993(79)90678-4. [DOI] [PubMed] [Google Scholar]
  26. Stettmeier H., Finger W. Excitatory postsynaptic channels operated by quisqualate in crayfish muscle. Pflugers Arch. 1983 May;397(3):237–242. doi: 10.1007/BF00584364. [DOI] [PubMed] [Google Scholar]
  27. Trussell L. O., Thio L. L., Zorumski C. F., Fischbach G. D. Rapid desensitization of glutamate receptors in vertebrate central neurons. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2834–2838. doi: 10.1073/pnas.85.8.2834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vyklický L., Vyklický L., Jr, Vyskocil F., Vlachová V., Ujec E., Michl J. Evidence that excitatory amino acids not only activate the receptor channel complex but also lead to use-dependent block. Brain Res. 1986 Jan 15;363(1):148–151. doi: 10.1016/0006-8993(86)90668-2. [DOI] [PubMed] [Google Scholar]
  29. Watkins J. C., Evans R. H. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol. 1981;21:165–204. doi: 10.1146/annurev.pa.21.040181.001121. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES