Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Mar;86(6):2056–2060. doi: 10.1073/pnas.86.6.2056

Gangliosides potentiate in vivo and in vitro effects of nerve growth factor on central cholinergic neurons.

A C Cuello 1, L Garofalo 1, R L Kenigsberg 1, D Maysinger 1
PMCID: PMC286846  PMID: 2928318

Abstract

The effects of nerve growth factor beta (beta-NGF) and ganglioside GM1 on forebrain cholinergic neurons were examined in vivo and in vitro. Following unilateral decortication of rats, GM1 (5 mg/kg per day) administered intracerebroventricularly could protect forebrain cholinergic neurons of the nucleus basalis magnocellularis from retrograde degeneration in a manner comparable to beta-NGF. Administered in combination with beta-NGF, GM1 produced a significant increase in choline acetyltransferase activity in the nucleus basalis magnocellularis and remaining cortex ipsilateral to the lesion. Concentrations of GM1 that were ineffective when administered alone in this lesion model, when given with beta-NGF, potentiated beta-NGF effects in both of the above brain areas. In dissociated septal cells in vitro, an increase in choline acetyltransferase activity was noted at beta-NGF concentrations as low as 0.1 pM and reached a plateau at 1 nM. A moderate (up to 35%) stimulation of choline acetyltransferase activity was observed with 10 microM GM1. The application of beta-NGF in combination with 10 microM GM1 or 0.1 microM GM1, a concentration that is ineffective in these cultures, produced a much greater increase in choline acetyltransferase activity than did beta-NGF alone. These observations support the idea that exogenously applied gangliosides can elicit trophic responses in cholinergic neurons of the central nervous system. That GM1 increases and even potentiates beta-NGF effects suggests that some of the trophic actions of this compound may be mediated through endogenous trophic factors.

Full text

PDF
2056

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assouline J. G., Bosch P., Lim R., Kim I. S., Jensen R., Pantazis N. J. Rat astrocytes and Schwann cells in culture synthesize nerve growth factor-like neurite-promoting factors. Brain Res. 1987 Jan;428(1):103–118. doi: 10.1016/0165-3806(87)90087-3. [DOI] [PubMed] [Google Scholar]
  2. Barbin G., Selak I., Manthorpe M., Varon S. Use of central neuronal cultures for the detection of neuronotrophic agents. Neuroscience. 1984 May;12(1):33–43. doi: 10.1016/0306-4522(84)90135-0. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Chandler C. E., Parsons L. M., Hosang M., Shooter E. M. A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells. J Biol Chem. 1984 Jun 10;259(11):6882–6889. [PubMed] [Google Scholar]
  5. Cheresh D. A., Pytela R., Pierschbacher M. D., Klier F. G., Ruoslahti E., Reisfeld R. A. An Arg-Gly-Asp-directed receptor on the surface of human melanoma cells exists in an divalent cation-dependent functional complex with the disialoganglioside GD2. J Cell Biol. 1987 Sep;105(3):1163–1173. doi: 10.1083/jcb.105.3.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuello A. C., Stephens P. H., Tagari P. C., Sofroniew M. V., Pearson R. C. Retrograde changes in the nucleus basalis of the rat, caused by cortical damage, are prevented by exogenous ganglioside GM1. Brain Res. 1986 Jun 25;376(2):373–377. doi: 10.1016/0006-8993(86)90202-7. [DOI] [PubMed] [Google Scholar]
  7. Doherty P., Dickson J. G., Flanigan T. P., Walsh F. S. Ganglioside GM1 does not initiate, but enhances neurite regeneration of nerve growth factor-dependent sensory neurones. J Neurochem. 1985 Apr;44(4):1259–1265. doi: 10.1111/j.1471-4159.1985.tb08752.x. [DOI] [PubMed] [Google Scholar]
  8. Dunnett S. B., Whishaw I. Q., Bunch S. T., Fine A. Acetylcholine-rich neuronal grafts in the forebrain of rats: effects of environmental enrichment, neonatal noradrenaline depletion, host transplantation site and regional source of embryonic donor cells on graft size and acetylcholinesterase-positive fibre outgrowth. Brain Res. 1986 Jul 23;378(2):357–373. doi: 10.1016/0006-8993(86)90939-x. [DOI] [PubMed] [Google Scholar]
  9. Eckenstein F., Thoenen H. Production of specific antisera and monoclonal antibodies to choline acetyltransferase: characterization and use for identification of cholinergic neurons. EMBO J. 1982;1(3):363–368. doi: 10.1002/j.1460-2075.1982.tb01175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
  11. Hatanaka H., Tsukui H. Differential effects of nerve-growth factor and glioma-conditioned medium on neurons cultured from various regions of fetal rat central nervous system. Brain Res. 1986 Nov;395(1):47–56. doi: 10.1016/s0006-8993(86)80007-5. [DOI] [PubMed] [Google Scholar]
  12. Hefti F., Hartikka J., Eckenstein F., Gnahn H., Heumann R., Schwab M. Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neuroscience. 1985 Jan;14(1):55–68. doi: 10.1016/0306-4522(85)90163-0. [DOI] [PubMed] [Google Scholar]
  13. Hefti F., Hartikka J., Frick W. Gangliosides alter morphology and growth of astrocytes and increase the activity of choline acetyltransferase in cultures of dissociated septal cells. J Neurosci. 1985 Aug;5(8):2086–2094. doi: 10.1523/JNEUROSCI.05-08-02086.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci. 1986 Aug;6(8):2155–2162. doi: 10.1523/JNEUROSCI.06-08-02155.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koh S., Loy R. Age-related loss of nerve growth factor sensitivity in rat basal forebrain neurons. Brain Res. 1988 Feb 9;440(2):396–401. doi: 10.1016/0006-8993(88)91015-3. [DOI] [PubMed] [Google Scholar]
  16. Kromer L. F. Nerve growth factor treatment after brain injury prevents neuronal death. Science. 1987 Jan 9;235(4785):214–216. doi: 10.1126/science.3798108. [DOI] [PubMed] [Google Scholar]
  17. Levi-Montalcini R., Aloe L. Differentiating effects of murine nerve growth factor in the peripheral and central nervous systems of Xenopus laevis tadpoles. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7111–7115. doi: 10.1073/pnas.82.20.7111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987 Sep 4;237(4819):1154–1162. doi: 10.1126/science.3306916. [DOI] [PubMed] [Google Scholar]
  19. Nieto-Sampedro M., Manthrope M., Barbin G., Varon S., Cotman C. W. Injury-induced neuronotrophic activity in adult rat brain: correlation with survival of delayed implants in the wound cavity. J Neurosci. 1983 Nov;3(11):2219–2229. doi: 10.1523/JNEUROSCI.03-11-02219.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oderfeld-Nowak B., Skup M., Ułas J., Jezierska M., Gradkowska M., Zaremba M. Effect of GM1 ganglioside treatment on postlesion responses of cholinergic enzymes in rat hippocampus after various partial deafferentations. J Neurosci Res. 1984;12(2-3):409–420. doi: 10.1002/jnr.490120225. [DOI] [PubMed] [Google Scholar]
  21. Schwartz M., Spirman N. Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibodies. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6080–6083. doi: 10.1073/pnas.79.19.6080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sofroniew M. V., Pearson R. C., Cuello A. C., Tagari P. C., Stephens P. H. Parenterally administered GM1 ganglioside prevents retrograde degeneration of cholinergic cells of the rat basal forebrain. Brain Res. 1986 Nov 29;398(2):393–396. doi: 10.1016/0006-8993(86)91503-9. [DOI] [PubMed] [Google Scholar]
  23. Sofroniew M. V., Pearson R. C., Eckenstein F., Cuello A. C., Powell T. P. Retrograde changes in cholinergic neurons in the basal forebrain of the rat following cortical damage. Brain Res. 1983 Dec 19;289(1-2):370–374. doi: 10.1016/0006-8993(83)90045-8. [DOI] [PubMed] [Google Scholar]
  24. Stephens P. H., Cuello A. C., Sofroniew M. V., Pearson R. C., Tagari P. Effect of unilateral decortication on choline acetyltransferase activity in the nucleus basalis and other areas of the rat brain. J Neurochem. 1985 Oct;45(4):1021–1026. doi: 10.1111/j.1471-4159.1985.tb05517.x. [DOI] [PubMed] [Google Scholar]
  25. Stephens P. H., Tagari P. C., Garofalo L., Maysinger D., Piotte M., Cuello A. C. Neural plasticity of basal forebrain cholinergic neurons: effects of gangliosides. Neurosci Lett. 1987 Sep 11;80(1):80–84. doi: 10.1016/0304-3940(87)90499-x. [DOI] [PubMed] [Google Scholar]
  26. Thoenen H., Bandtlow C., Heumann R. The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev Physiol Biochem Pharmacol. 1987;109:145–178. doi: 10.1007/BFb0031026. [DOI] [PubMed] [Google Scholar]
  27. Toffano G., Benvegnù D., Bonetti A. C., Facci L., Leon A., Orlando P., Ghidoni R., Tettamanti G. Interactions of GM1 ganglioside with crude rat brain neuronal membranes. J Neurochem. 1980 Oct;35(4):861–866. doi: 10.1111/j.1471-4159.1980.tb07083.x. [DOI] [PubMed] [Google Scholar]
  28. Toffano G., Savoini G. E., Moroni F., Lombardi G., Calzà L., Agnati L. F. Chronic GM1 ganglioside treatment reduces dopamine cell body degeneration in the substantia nigra after unilateral hemitransection in rat. Brain Res. 1984 Apr 2;296(2):233–239. doi: 10.1016/0006-8993(84)90061-1. [DOI] [PubMed] [Google Scholar]
  29. Vantini G., Fusco M., Bigon E., Leon A. GM1 ganglioside potentiates the effect of nerve growth factor in preventing vinblastine-induced sympathectomy in newborn rats. Brain Res. 1988 May 17;448(2):252–258. doi: 10.1016/0006-8993(88)91262-0. [DOI] [PubMed] [Google Scholar]
  30. Whittemore S. R., Seiger A. The expression, localization and functional significance of beta-nerve growth factor in the central nervous system. Brain Res. 1987 Nov;434(4):439–464. doi: 10.1016/0165-0173(87)90008-7. [DOI] [PubMed] [Google Scholar]
  31. Williams L. R., Varon S., Peterson G. M., Wictorin K., Fischer W., Bjorklund A., Gage F. H. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9231–9235. doi: 10.1073/pnas.83.23.9231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES