Abstract
In adult cats, retinal ganglion cells of the beta class project almost exclusively to the lateral geniculate nucleus rather than to the superior colliculus (SC). We have examined whether this target specificity is present during early development. To identify ganglion cells that send axons to the SC in development, rhodamine-labeled microspheres were deposited in the SC at embryonic day (E) 38, E43, or postnatal day (P) 4. Retinae were then removed between E56 and P32 and kept alive in a tissue-slice chamber so that ganglion cells that had been retrogradely labeled with microspheres could be injected intracellularly with Lucifer yellow to reveal their morphological class. Many beta cells could be retrogradely labeled by microspheres injected into the SC at E38 or E43. They were indistinguishable from beta cells projecting to the lateral geniculate nucleus and were found even when a single injection was restricted to the caudal portion of the SC. In contrast, beta cells could not be retrogradely labeled by microspheres injected into the SC at P4. The disappearance of a beta-cell projection to the SC cannot be explained entirely by cell death since as late as P32, well after the major period of ganglion cell death, many beta ganglion cells labeled with microspheres at E38 were still present. These observations suggest that many beta cells initially extend an axon collateral to the SC that is subsequently lost some time after E43. Thus, to achieve the remarkable specificity present in the adult visual system, beta cells must withdraw axon collaterals from an entire target nucleus. Similar collateral elimination may give rise to the specificity of afferent connections in other sensory systems.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boycott B. B., Wässle H. The morphological types of ganglion cells of the domestic cat's retina. J Physiol. 1974 Jul;240(2):397–419. doi: 10.1113/jphysiol.1974.sp010616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowan W. M., Fawcett J. W., O'Leary D. D., Stanfield B. B. Regressive events in neurogenesis. Science. 1984 Sep 21;225(4668):1258–1265. doi: 10.1126/science.6474175. [DOI] [PubMed] [Google Scholar]
- Dann J. F., Buhl E. H., Peichl L. Dendritic maturation in cat retinal ganglion cells: a Lucifer yellow study. Neurosci Lett. 1987 Sep 11;80(1):21–26. doi: 10.1016/0304-3940(87)90488-5. [DOI] [PubMed] [Google Scholar]
- Dehay C., Kennedy H., Bullier J., Berland M. Absence of interhemispheric connections of area 17 during development in the monkey. Nature. 1988 Jan 28;331(6154):348–350. doi: 10.1038/331348a0. [DOI] [PubMed] [Google Scholar]
- Frost D. O. Axonal growth and target selection during development: retinal projections to the ventrobasal complex and other "nonvisual" structures in neonatal Syrian hamsters. J Comp Neurol. 1984 Dec 20;230(4):576–592. doi: 10.1002/cne.902300407. [DOI] [PubMed] [Google Scholar]
- Fukuda Y., Hsiao C. F., Watanabe M., Ito H. Morphological correlates of physiologically identified Y-, X-, and W-cells in cat retina. J Neurophysiol. 1984 Dec;52(6):999–1013. doi: 10.1152/jn.1984.52.6.999. [DOI] [PubMed] [Google Scholar]
- Harris W. A. Neural activity and development. Annu Rev Physiol. 1981;43:689–710. doi: 10.1146/annurev.ph.43.030181.003353. [DOI] [PubMed] [Google Scholar]
- Innocenti G. M. Growth and reshaping of axons in the establishment of visual callosal connections. Science. 1981 May 15;212(4496):824–827. doi: 10.1126/science.7221566. [DOI] [PubMed] [Google Scholar]
- Ivy G. O., Killackey H. P. The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex. J Comp Neurol. 1981 Jan 20;195(3):367–389. doi: 10.1002/cne.901950302. [DOI] [PubMed] [Google Scholar]
- Katz L. C. Local circuitry of identified projection neurons in cat visual cortex brain slices. J Neurosci. 1987 Apr;7(4):1223–1249. doi: 10.1523/JNEUROSCI.07-04-01223.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koontz M. A., Rodieck R. W., Farmer S. G. The retinal projection to the cat pretectum. J Comp Neurol. 1985 Jun 1;236(1):42–59. doi: 10.1002/cne.902360105. [DOI] [PubMed] [Google Scholar]
- Leventhal A. G., Rodieck R. W., Dreher B. Central projections of cat retinal ganglion cells. J Comp Neurol. 1985 Jul 8;237(2):216–226. doi: 10.1002/cne.902370206. [DOI] [PubMed] [Google Scholar]
- Maslim J., Stone J. Synaptogenesis in the retina of the cat. Brain Res. 1986 May 14;373(1-2):35–48. doi: 10.1016/0006-8993(86)90313-6. [DOI] [PubMed] [Google Scholar]
- Maslim J., Webster M., Stone J. Stages in the structural differentiation of retinal ganglion cells. J Comp Neurol. 1986 Dec 15;254(3):382–402. doi: 10.1002/cne.902540310. [DOI] [PubMed] [Google Scholar]
- O'Leary D. D., Stanfield B. B., Cowan W. M. Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons. Brain Res. 1981 Jul;227(4):607–617. doi: 10.1016/0165-3806(81)90012-2. [DOI] [PubMed] [Google Scholar]
- Ramoa A. S., Campbell G., Shatz C. J. Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development. J Neurosci. 1988 Nov;8(11):4239–4261. doi: 10.1523/JNEUROSCI.08-11-04239.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramoa A. S., Campbell G., Shatz C. J. Transient morphological features of identified ganglion cells in living fetal and neonatal retina. Science. 1987 Jul 31;237(4814):522–525. doi: 10.1126/science.3603038. [DOI] [PubMed] [Google Scholar]
- Saito H. A. Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat. J Comp Neurol. 1983 Dec 10;221(3):279–288. doi: 10.1002/cne.902210304. [DOI] [PubMed] [Google Scholar]
- Sawai H., Fukuda Y., Wakakuwa K. Axonal projections of X-cells to the superior colliculus and to the nucleus of the optic tract in cats. Brain Res. 1985 Aug 19;341(1):1–6. doi: 10.1016/0006-8993(85)91465-9. [DOI] [PubMed] [Google Scholar]
- Shatz C. J., Sretavan D. W. Interactions between retinal ganglion cells during the development of the mammalian visual system. Annu Rev Neurosci. 1986;9:171–207. doi: 10.1146/annurev.ne.09.030186.001131. [DOI] [PubMed] [Google Scholar]
- Shatz C. J., Stryker M. P. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science. 1988 Oct 7;242(4875):87–89. doi: 10.1126/science.3175636. [DOI] [PubMed] [Google Scholar]
- Shatz C. J. The prenatal development of the cat's retinogeniculate pathway. J Neurosci. 1983 Mar;3(3):482–499. doi: 10.1523/JNEUROSCI.03-03-00482.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh C., Polley E. H. The topography of ganglion cell production in the cat's retina. J Neurosci. 1985 Mar;5(3):741–750. doi: 10.1523/JNEUROSCI.05-03-00741.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams R. W., Bastiani M. J., Lia B., Chalupa L. M. Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat's optic nerve. J Comp Neurol. 1986 Apr 1;246(1):32–69. doi: 10.1002/cne.902460104. [DOI] [PubMed] [Google Scholar]
- Williams R. W., Chalupa L. M. Prenatal development of retinocollicular projections in the cat: an anterograde tracer transport study. J Neurosci. 1982 May;2(5):604–622. doi: 10.1523/JNEUROSCI.02-05-00604.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wässle H., Illing R. B. The retinal projection to the superior colliculus in the cat: a quantitative study with HRP. J Comp Neurol. 1980 Mar 15;190(2):333–356. doi: 10.1002/cne.901900208. [DOI] [PubMed] [Google Scholar]