Abstract
It has long been recognized that the renal proximal tubular epithelium of the hamster is a bona fide estrogen target tissue. The effect of estrogens on the growth of proximal tubule cell explants and dissociated single cells derived from these explant outgrowths has been studied in culture. Renal tubular cells were grown on a PF-HR-9 basement membrane under serum-free chemically defined culture conditions. The cells of tissue explant outgrowths exhibited ultrastructural features typical of proximal tubules including junctional complexes, numerous mitochondria, peroxisomes, and microvilli. At 7-14 days in culture, cell number was enhanced 3-fold in the presence of either 17 beta-estradiol or diethylstilbestrol. Maximal proliferative response was observed at hormone concentrations of 0.6-1 nM. A similar 3-fold increase in cell number was also seen at 1 nM 17 beta-estradiol in subcultured dissociated single tubular cells derived from hamster renal tubular explant outgrowths at 21 days in culture. Neither progesterone, 5 alpha-dihydrotestosterone, nor the inactive diethylstilbestrol metabolite beta-dienestrol elicited this mitogenic effect. Concomitant exposure of tamoxifen at 3-fold molar excess in culture completely abolished the increase in cell number seen with 17 beta-estradiol. Tubular cells obtained from hamster medulla did not exhibit this proliferative response when exposed similarly to 17 beta-estradiol or diethylstilbestrol. The proliferative effect of estrogens on proximal tubular cell growth appears to be species specific since 17 beta-estradiol did not alter the growth of either rat or guinea pig proximal tubules in culture. In addition, at 7-10 days in culture in the presence of 17 beta-estradiol, [3H]thymidine labeling of hamster tubular cells was enhanced 3-fold. A similar increase in mitoses was also observed in cultures containing these potent estrogens during the same time interval of estrogen exposure. These results clearly indicate that estrogens can directly induce primary epithelial cell proliferation at physiologic concentrations and provide strong additional evidence for an important hormonal role in the neoplastic transformation of the hamster kidney.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berthois Y., Katzenellenbogen J. A., Katzenellenbogen B. S. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2496–2500. doi: 10.1073/pnas.83.8.2496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayton D. F., Harrelson A. L., Darnell J. E., Jr Dependence of liver-specific transcription on tissue organization. Mol Cell Biol. 1985 Oct;5(10):2623–2632. doi: 10.1128/mcb.5.10.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke P. S., Uchima F. D., Fujii D. K., Bern H. A., Cunha G. R. Restoration of normal morphology and estrogen responsiveness in cultured vaginal and uterine epithelia transplanted with stroma. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2109–2113. doi: 10.1073/pnas.83.7.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerschenson L. E., Conner E., Murai J. T. Regulation of the cell cycle by diethylstilbestrol and progesterone in cultured endometrial cells. Endocrinology. 1977 May;100(5):1468–1471. doi: 10.1210/endo-100-5-1468. [DOI] [PubMed] [Google Scholar]
- HORNING E. S., WHITTICK J. W. The histogenesis of stilboestrol-induced renal tumours in the male golden hamster. Br J Cancer. 1954 Sep;8(3):451–457. doi: 10.1038/bjc.1954.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hacker H. J., Bannasch P., Liehr J. G. Histochemical analysis of the development of estradiol-induced kidney tumors in male Syrian hamsters. Cancer Res. 1988 Feb 15;48(4):971–976. [PubMed] [Google Scholar]
- Iguchi T., Uchima F. D., Ostrander P. L., Bern H. A. Growth of normal mouse vaginal epithelial cells in and on collagen gels. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3743–3747. doi: 10.1073/pnas.80.12.3743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikeda T., Sirbasku D. A. Purification and properties of a mammary-uterine-pituitary tumor cell growth factor from pregnant sheep uterus. J Biol Chem. 1984 Apr 10;259(7):4049–4064. [PubMed] [Google Scholar]
- KIRKMAN H., ROBBINS M. Estrogen-induced tumors of the kidney. V. Histology and histogenesis in the Syrian hamster. Natl Cancer Inst Monogr. 1959 Dec;1:93–139. [PubMed] [Google Scholar]
- Lee E. Y., Lee W. H., Kaetzel C. S., Parry G., Bissell M. J. Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1419–1423. doi: 10.1073/pnas.82.5.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J. J., Cuthbertson T. L., Li S. A. Inhibition of estrogen tumorigenesis in the Syrian golden hamster kidney by antiestrogens. J Natl Cancer Inst. 1980 Apr;64(4):795–800. [PubMed] [Google Scholar]
- Li J. J., Li S. A. Estrogen carcinogenesis in Syrian hamster tissues: role of metabolism. Fed Proc. 1987 Apr;46(5):1858–1863. [PubMed] [Google Scholar]
- Li J. J., Li S. A. Estrogen-induced tumorigenesis in hamsters: roles for hormonal and carcinogenic activities. Arch Toxicol. 1984 Jul;55(2):110–118. doi: 10.1007/BF00346048. [DOI] [PubMed] [Google Scholar]
- Li S. A., Klicka J. K., Li J. J. Estrogen 2- and 4-hydroxylase activity, catechol estrogen formation, and implications for estrogen carcinogenesis in the hamster kidney. Cancer Res. 1985 Jan;45(1):181–185. [PubMed] [Google Scholar]
- Li S. A., Li J. J. Estrogen-induced progesterone receptor in the Syrian hamster kidney. I. Modulation by antiestrogens and androgens. Endocrinology. 1978 Dec;103(6):2119–2128. doi: 10.1210/endo-103-6-2119. [DOI] [PubMed] [Google Scholar]
- Lippman M., Bolan G., Huff K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 1976 Dec;36(12):4595–4601. [PubMed] [Google Scholar]
- Lobb D. K., Skinner M. K., Dorrington J. H. Rat thecal/interstitial cells produce a mitogenic activity that promotes the growth of granulosa cells. Mol Cell Endocrinol. 1988 Feb;55(2-3):209–217. doi: 10.1016/0303-7207(88)90136-0. [DOI] [PubMed] [Google Scholar]
- Nawata H., Yamamoto R. S., Poirier L. A. Elevated levels of ornithine decarboxylase and polyamines in the kidneys of estradiol-treated male hamsters. Carcinogenesis. 1981;2(11):1207–1211. doi: 10.1093/carcin/2.11.1207. [DOI] [PubMed] [Google Scholar]
- Oberley T. D., Steinert B. W., Yang A. H., Anderson P. J. Kidney glomerular explants in serum-free media. Sequential morphologic and quantitative analysis of cell outgrowths. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;50(3):209–235. doi: 10.1007/BF02889903. [DOI] [PubMed] [Google Scholar]
- Oberley T. D., Yang A. H., Gould-Kostka J. Selection of kidney cell types in primary glomerular explant outgrowths by in vitro culture conditions. J Cell Sci. 1986 Aug;84:69–92. doi: 10.1242/jcs.84.1.69. [DOI] [PubMed] [Google Scholar]
- Pavlik E. J., Katzenellenbogen B. S. Human endometrial cells in primary tissue culture: estrogen interactions and modulation of cell proliferation. J Clin Endocrinol Metab. 1978 Aug;47(2):333–344. doi: 10.1210/jcem-47-2-333. [DOI] [PubMed] [Google Scholar]
- Sirbasku D. A. Estrogen induction of growth factors specific for hormone-responsive mammary, pituitary, and kidney tumor cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3786–3790. doi: 10.1073/pnas.75.8.3786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirbasku D. A., Kirkland W. L. Control of cell growth. IV. Growth properties of a new cell line established from an estrogen-dependent kidney tumor of the Syrian hamster. Endocrinology. 1976 May;98(5):1260–1272. doi: 10.1210/endo-98-5-1260. [DOI] [PubMed] [Google Scholar]
- Tomooka Y., DiAugustine R. P., McLachlan J. A. Proliferation of mouse uterine epithelial cells in vitro. Endocrinology. 1986 Mar;118(3):1011–1018. doi: 10.1210/endo-118-3-1011. [DOI] [PubMed] [Google Scholar]
- Yamada K. M., Akiyama S. K., Hasegawa T., Hasegawa E., Humphries M. J., Kennedy D. W., Nagata K., Urushihara H., Olden K., Chen W. T. Recent advances in research on fibronectin and other cell attachment proteins. J Cell Biochem. 1985;28(2):79–97. doi: 10.1002/jcb.240280202. [DOI] [PubMed] [Google Scholar]
- Yang A. H., Gould-Kostka J., Oberley T. D. In vitro growth and differentiation of human kidney tubular cells on a basement membrane substrate. In Vitro Cell Dev Biol. 1987 Jan;23(1):34–46. doi: 10.1007/BF02623491. [DOI] [PubMed] [Google Scholar]
- Yang J., Richards J., Guzman R., Imagawa W., Nandi S. Sustained growth in primary culture of normal mammary epithelial cells embedded in collagen gels. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2088–2092. doi: 10.1073/pnas.77.4.2088. [DOI] [PMC free article] [PubMed] [Google Scholar]