Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Apr;86(7):2463–2467. doi: 10.1073/pnas.86.7.2463

Cloning of a cDNA encoding the rat high molecular weight neurofilament peptide (NF-H): developmental and tissue expression in the rat, and mapping of its human homologue to chromosomes 1 and 22.

I Lieberburg 1, N Spinner 1, S Snyder 1, J Anderson 1, D Goldgaber 1, M Smulowitz 1, Z Carroll 1, B Emanuel 1, J Breitner 1, L Rubin 1
PMCID: PMC286933  PMID: 2928342

Abstract

Neurofilaments (NFs) are the intermediate filaments specific to nervous tissue. They are probably essential to the tensile strength of the neuron, as well as to transport of molecules and organelles within the axon. Three peptides with apparent molecular masses of approximately 68 (NF-L), 145 (NF-M), and 200 (NF-H) kDa appear to be the major components of NF. The expression of these peptides is specific to nervous tissue and is developmentally regulated. Recently, complete cDNAs encoding NF-L and NF-M, and partial cDNAs encoding NF-H, have been described. To better understand the normal and pathophysiology of NFs we chose to clone the cDNA encoding the rat NF-H peptide. Using monoclonal antibodies that recognized NF-H, we screened a rat brain lambda gt11 library and identified a clone that contained a 2100-nucleotide cDNA insert representing the carboxyl-terminal portion of the NF-H protein. Anti-fusion protein antibodies recognized the NF-H peptide on immunoblots and stained fibrillar structures only in neurons. The cDNA recognized a 4500-nucleotide polyadenylated mRNA that was present only in nervous tissue and a 3500-nucleotide mRNA in adrenal. Brain NF-H mRNA levels were tightly developmentally regulated and paralleled the levels of NF-H peptide on immunoblots. Nuclear runoff studies showed that the 20-fold developmental increase in the NF-H message was due only in part to a 4-fold increase in its transcription rate. Levels of NF-H mRNA varied 20-fold among brain regions, with highest levels in pons/medulla, spinal cord, and cerebellum, and lowest levels in olfactory bulb and hypothalamus. Transcription studies revealed only a 2-fold difference in the transcription rates among these brain regions. Based on these results, we infer that half of the developmental increase and most of the interregional variation in the levels of the NF-H mRNA are mediated through message stabilization. Sequence information revealed that the carboxyl-terminal region of the NF-H peptide contained a unique serine-, proline-, alanine-, glutamic acid-, and lysine-rich repeat. The serine residues are likely sites of phosphorylation in the mature peptide. Genomic blots revealed a single copy of the gene in the rat genome and two copies in the human genome. In situ hybridizations performed on human chromosomes mapped the NF-H gene to chromosomes 1 and 22. Whether one copy is a pseudogene remains to be determined.

Full text

PDF
2463

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carden M. J., Schlaepfer W. W., Lee V. M. The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J Biol Chem. 1985 Aug 15;260(17):9805–9817. [PubMed] [Google Scholar]
  2. Cochard P., Paulin D. Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci. 1984 Aug;4(8):2080–2094. doi: 10.1523/JNEUROSCI.04-08-02080.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dahl D., Bignami A. Neurofilament phosphorylation in development. A sign of axonal maturation? Exp Cell Res. 1986 Jan;162(1):220–230. doi: 10.1016/0014-4827(86)90440-4. [DOI] [PubMed] [Google Scholar]
  4. Davis M., Malcolm S., Hall A., Marshall C. J. Localisation of the human N-ras oncogene to chromosome 1cen - p21 by in situ hybridisation. EMBO J. 1983;2(12):2281–2283. doi: 10.1002/j.1460-2075.1983.tb01735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Emanuel B. S., Cannizzaro L. A., Seyer J. M., Myers J. C. Human alpha 1(III) and alpha 2(V) procollagen genes are located on the long arm of chromosome 2. Proc Natl Acad Sci U S A. 1985 May;82(10):3385–3389. doi: 10.1073/pnas.82.10.3385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Francke U., de Martinville B., Coussens L., Ullrich A. The human gene for the beta subunit of nerve growth factor is located on the proximal short arm of chromosome 1. Science. 1983 Dec 16;222(4629):1248–1251. doi: 10.1126/science.6648531. [DOI] [PubMed] [Google Scholar]
  7. Gajdusek D. C. Hypothesis: interference with axonal transport of neurofilament as a common pathogenetic mechanism in certain diseases of the central nervous system. N Engl J Med. 1985 Mar 14;312(11):714–719. doi: 10.1056/NEJM198503143121110. [DOI] [PubMed] [Google Scholar]
  8. Gay D. A., Yen T. J., Lau J. T., Cleveland D. W. Sequences that confer beta-tubulin autoregulation through modulated mRNA stability reside within exon 1 of a beta-tubulin mRNA. Cell. 1987 Aug 28;50(5):671–679. doi: 10.1016/0092-8674(87)90325-4. [DOI] [PubMed] [Google Scholar]
  9. Geisler N., Fischer S., Vandekerckhove J., Damme J. V., Plessmann U., Weber K. Protein-chemical characterization of NF-H, the largest mammalian neurofilament component; intermediate filament-type sequences followed by a unique carboxy-terminal extension. EMBO J. 1985 Jan;4(1):57–63. doi: 10.1002/j.1460-2075.1985.tb02317.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilbert F., Feder M., Balaban G., Brangman D., Lurie D. K., Podolsky R., Rinaldt V., Vinikoor N., Weisband J. Human neuroblastomas and abnormalities of chromosomes 1 and 17. Cancer Res. 1984 Nov;44(11):5444–5449. [PubMed] [Google Scholar]
  11. Goedert M., Wischik C. M., Crowther R. A., Walker J. E., Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4051–4055. doi: 10.1073/pnas.85.11.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greenberg M. E., Ziff E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature. 1984 Oct 4;311(5985):433–438. doi: 10.1038/311433a0. [DOI] [PubMed] [Google Scholar]
  13. Hirokawa N., Glicksman M. A., Willard M. B. Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol. 1984 Apr;98(4):1523–1536. doi: 10.1083/jcb.98.4.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoffman P. N., Cleveland D. W., Griffin J. W., Landes P. W., Cowan N. J., Price D. L. Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci U S A. 1987 May;84(10):3472–3476. doi: 10.1073/pnas.84.10.3472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Julien J. P., Meyer D., Flavell D., Hurst J., Grosveld F. Cloning and developmental expression of the murine neurofilament gene family. Brain Res. 1986 Dec;387(3):243–250. doi: 10.1016/0169-328x(86)90030-6. [DOI] [PubMed] [Google Scholar]
  16. Julien J. P., Mushynski W. E. Multiple phosphorylation sites in mammalian neurofilament polypeptides. J Biol Chem. 1982 Sep 10;257(17):10467–10470. [PubMed] [Google Scholar]
  17. Kaufmann E., Geisler N., Weber K. SDS-PAGE strongly overestimates the molecular masses of the neurofilament proteins. FEBS Lett. 1984 May 7;170(1):81–84. doi: 10.1016/0014-5793(84)81373-3. [DOI] [PubMed] [Google Scholar]
  18. Ksiezak-Reding H., Dickson D. W., Davies P., Yen S. H. Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles. Proc Natl Acad Sci U S A. 1987 May;84(10):3410–3414. doi: 10.1073/pnas.84.10.3410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lappin R. I., Rubin L. L., Lieberburg I. M. Generation of subunit-specific antibody probes for Torpedo acetylcholinesterase: cross-species reactivity and use in cell-free translations. J Neurobiol. 1987 Jan;18(1):75–99. doi: 10.1002/neu.480180107. [DOI] [PubMed] [Google Scholar]
  20. Lee V. M., Otvos L., Jr, Carden M. J., Hollosi M., Dietzschold B., Lazzarini R. A. Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1998–2002. doi: 10.1073/pnas.85.6.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lewis S. A., Cowan N. J. Genetics, evolution, and expression of the 68,000-mol-wt neurofilament protein: isolation of a cloned cDNA probe. J Cell Biol. 1985 Mar;100(3):843–850. doi: 10.1083/jcb.100.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lindenbaum M. H., Carbonetto S., Grosveld F., Flavell D., Mushynski W. E. Transcriptional and post-transcriptional effects of nerve growth factor on expression of the three neurofilament subunits in PC-12 cells. J Biol Chem. 1988 Apr 25;263(12):5662–5667. [PubMed] [Google Scholar]
  23. McEwen B. S., Plapinger L., Wallach G., Magnus C. Properties of cell nuclei isolated from various regions of rat brain: divergent characteristics of cerebellar cell nuclei. J Neurochem. 1972 Apr;19(4):1159–1170. doi: 10.1111/j.1471-4159.1972.tb01436.x. [DOI] [PubMed] [Google Scholar]
  24. Napolitano E. W., Chin S. S., Colman D. R., Liem R. K. Complete amino acid sequence and in vitro expression of rat NF-M, the middle molecular weight neurofilament protein. J Neurosci. 1987 Aug;7(8):2590–2599. [PMC free article] [PubMed] [Google Scholar]
  25. Ravetch J. V., Kochan J., Perkins M. Isolation of the gene for a glycophorin-binding protein implicated in erythrocyte invasion by a malaria parasite. Science. 1985 Mar 29;227(4694):1593–1597. doi: 10.1126/science.3883491. [DOI] [PubMed] [Google Scholar]
  26. Robinson P. A., Wion D., Anderton B. H. Isolation of a cDNA for the rat heavy neurofilament polypeptide (NF-H). FEBS Lett. 1986 Dec 15;209(2):203–205. doi: 10.1016/0014-5793(86)81111-5. [DOI] [PubMed] [Google Scholar]
  27. Seizinger B. R., Martuza R. L., Gusella J. F. Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature. 1986 Aug 14;322(6080):644–647. doi: 10.1038/322644a0. [DOI] [PubMed] [Google Scholar]
  28. Shaw G., Weber K. Differential expression of neurofilament triplet proteins in brain development. Nature. 1982 Jul 15;298(5871):277–279. doi: 10.1038/298277a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spindler S. R., Mellon S. H., Baxter J. D. Growth hormone gene transcription is regulated by thyroid and glucocorticoid hormones in cultured rat pituitary tumor cells. J Biol Chem. 1982 Oct 10;257(19):11627–11632. [PubMed] [Google Scholar]
  30. Vigfusson N. V., Allen L. J., Phillips J. H., Alschibaja T., Riches W. G. A neuroendocrine tumor of the small intestine with a karyotype of 46,XY,t(11;22). Cancer Genet Cytogenet. 1986 Jul;22(3):211–218. doi: 10.1016/0165-4608(86)90157-3. [DOI] [PubMed] [Google Scholar]
  31. Whang-Peng J., Triche T. J., Knutsen T., Miser J., Douglass E. C., Israel M. A. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med. 1984 Aug 30;311(9):584–585. doi: 10.1056/NEJM198408303110907. [DOI] [PubMed] [Google Scholar]
  32. Zang K. D. Cytological and cytogenetical studies on human meningioma. Cancer Genet Cytogenet. 1982 Jul;6(3):249–274. doi: 10.1016/0165-4608(82)90063-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES