Abstract
Xenopus laevis oocytes possess a glucose transport system that is activated 3- to 5-fold by insulin-like growth factor I (Ka = 3 nM) and insulin (Ka = 200-250 nM), properties suggesting activation mediated by an insulin-like growth factor I receptor. This activation increases the Vmax of hexose uptake and has little or no effect on the Km for deoxyglucose (Km = 1-2 mM). Activation by hormone requires about 60 min and is inhibited by cytochalasin B but not by cycloheximide. The dependence of hexose uptake rate on hexose concentration exhibits cooperativity with Hill coefficients of 1.8 and 1.4 for the basal and hormone-activated states, respectively. Microinjection of a monoclonal antibody directed against the tyrosine kinase domain of the human insulin receptor blocks activation of hexose uptake by insulin-like growth factor I and insulin but has no effect on basal uptake. Taken together the results implicate the tyrosine-specific protein kinase activity of a cell-surface insulin-like growth factor I receptor in the activation of glucose transport in the Xenopus oocyte.
Full text
PDF![2642](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a35/286973/e9eac5f19d63/pnas00248-0131.png)
![2643](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a35/286973/d5d212234926/pnas00248-0132.png)
![2644](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a35/286973/68dc39473f8e/pnas00248-0133.png)
![2645](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a35/286973/df96c1e7678a/pnas00248-0134.png)
![2646](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a35/286973/c52632259379/pnas00248-0135.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beguinot F., Kahn C. R., Moses A. C., Smith R. J. Distinct biologically active receptors for insulin, insulin-like growth factor I, and insulin-like growth factor II in cultured skeletal muscle cells. J Biol Chem. 1985 Dec 15;260(29):15892–15898. [PubMed] [Google Scholar]
- Cushman S. W., Wardzala L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980 May 25;255(10):4758–4762. [PubMed] [Google Scholar]
- El-Etr M., Schorderet-Slatkine S., Baulieu E. E. Meiotic maturation in Xenopus laevis oocytes initiated by insulin. Science. 1979 Sep 28;205(4413):1397–1399. doi: 10.1126/science.472755. [DOI] [PubMed] [Google Scholar]
- Ellis L., Clauser E., Morgan D. O., Edery M., Roth R. A., Rutter W. J. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell. 1986 Jun 6;45(5):721–732. doi: 10.1016/0092-8674(86)90786-5. [DOI] [PubMed] [Google Scholar]
- Frost S. C., Lane M. D. Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes. J Biol Chem. 1985 Mar 10;260(5):2646–2652. [PubMed] [Google Scholar]
- Hirai S., Le Goascogne C., Baulieu E. E. Induction of germinal vesicle breakdown in Xenopus laevis oocytes: response of denuded oocytes to progesterone and insulin. Dev Biol. 1983 Nov;100(1):214–221. doi: 10.1016/0012-1606(83)90213-0. [DOI] [PubMed] [Google Scholar]
- Joost H. G., Weber T. M., Cushman S. W., Simpson I. A. Activity and phosphorylation state of glucose transporters in plasma membranes from insulin-, isoproterenol-, and phorbol ester-treated rat adipose cells. J Biol Chem. 1987 Aug 15;262(23):11261–11267. [PubMed] [Google Scholar]
- Kohanski R. A., Frost S. C., Lane M. D. Insulin-dependent phosphorylation of the insulin receptor-protein kinase and activation of glucose transport in 3T3-L1 adipocytes. J Biol Chem. 1986 Sep 15;261(26):12272–12281. [PubMed] [Google Scholar]
- Le Goascogne C., Sananès N., Gouézou M., Baulieu E. E. Alkaline phosphatase activity in the membrane of Xenopus laevis oocytes: effects of steroids, insulin, and inhibitors during meiosis reinitiation. Dev Biol. 1987 Feb;119(2):511–519. doi: 10.1016/0012-1606(87)90054-6. [DOI] [PubMed] [Google Scholar]
- Maller J. L., Koontz J. W. A study of the induction of cell division in amphibian oocytes by insulin. Dev Biol. 1981 Jul 30;85(2):309–316. doi: 10.1016/0012-1606(81)90262-1. [DOI] [PubMed] [Google Scholar]
- Morgan D. O., Ho L., Korn L. J., Roth R. A. Insulin action is blocked by a monoclonal antibody that inhibits the insulin receptor kinase. Proc Natl Acad Sci U S A. 1986 Jan;83(2):328–332. doi: 10.1073/pnas.83.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosen O. M. After insulin binds. Science. 1987 Sep 18;237(4821):1452–1458. doi: 10.1126/science.2442814. [DOI] [PubMed] [Google Scholar]
- Sadler S. E., Maller J. L. In vivo regulation of cyclic AMP phosphodiesterase in Xenopus oocytes. Stimulation by insulin and insulin-like growth factor 1. J Biol Chem. 1987 Aug 5;262(22):10644–10650. [PubMed] [Google Scholar]
- Sakanoue Y., Hashimoto E., Nakamura S., Yamamura H. Insulin-stimulated serine kinase in Xenopus oocyte plasma membrane. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1176–1184. doi: 10.1016/0006-291x(88)90753-x. [DOI] [PubMed] [Google Scholar]
- Simpson I. A., Cushman S. W. Hormonal regulation of mammalian glucose transport. Annu Rev Biochem. 1986;55:1059–1089. doi: 10.1146/annurev.bi.55.070186.005211. [DOI] [PubMed] [Google Scholar]
- Smith A. A., Brooker T., Brooker G. Expression of rat mRNA coding for hormone-stimulated adenylate cyclase in Xenopus oocytes. FASEB J. 1987 Nov;1(5):380–387. doi: 10.1096/fasebj.1.5.2824269. [DOI] [PubMed] [Google Scholar]
- Stefanovic D., Erikson E., Pike L. J., Maller J. L. Activation of a ribosomal protein S6 protein kinase in Xenopus oocytes by insulin and insulin-receptor kinase. EMBO J. 1986 Jan;5(1):157–160. doi: 10.1002/j.1460-2075.1986.tb04190.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stith B. J., Maller J. L. The effect of insulin on intracellular ph and ribosomal protein S6 phosphorylation in oocytes of Xenopus laevis. Dev Biol. 1984 Mar;102(1):79–89. doi: 10.1016/0012-1606(84)90176-3. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A. 1980 May;77(5):2542–2545. doi: 10.1073/pnas.77.5.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ullrich A., Gray A., Tam A. W., Yang-Feng T., Tsubokawa M., Collins C., Henzel W., Le Bon T., Kathuria S., Chen E. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986 Oct;5(10):2503–2512. doi: 10.1002/j.1460-2075.1986.tb04528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]