Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Apr;86(8):2658–2662. doi: 10.1073/pnas.86.8.2658

In photosynthetic reaction centers, the free energy difference for electron transfer between quinones bound at the primary and secondary quinone-binding sites governs the observed secondary site specificity.

K M Giangiacomo 1, P L Dutton 1
PMCID: PMC286977  PMID: 2649889

Abstract

The secondary quinone-binding site (QB site) of bacterial reaction centers from Rhodobacter sphaeroides is generally regarded to be highly specific for its native ubiquinone-10 molecule. We demonstrate here that this is a misconception rooted in the kinetic methods used to assay for occupancy of a quinone in the QB site. We show that observance of occupancy of the QB site, revealed by kinetic assay, is sensitive to the free-energy difference for electron transfer between the quinone at the primary quinone-binding site (QA site) and the QB site (-delta G0e-). For many of the compounds previously tested for binding at the QB site, the -delta G0e- between QA and QB is too small to permit detection of the functional quinone in the QB site. With an increased -delta G0e- achieved by replacing the native ubiquinone-10 at the QA site with lower-potential quinones or by testing higher-potential QB candidates, it is shown that the QB site binds and functions with the unsubstituted 1,4-benzoquinone, 1,4-naphthoquinone, and 9,10-phenanthraquinone, as well as with their various substituted forms. Moreover, quinones with the ortho-carbonyl configuration appear to function in a similar manner to quinones with the para-carbonyl configuration.

Full text

PDF
2658

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baccarini-Melandri A., Gabellini N., Melandri B. A., Hurt E., Hauska G. Structural requirements of quinone coenzymes for endogenous and dye-mediated coupled electron transport in bacterial photosynthesis. J Bioenerg Biomembr. 1980 Aug;12(3-4):95–110. doi: 10.1007/BF00744677. [DOI] [PubMed] [Google Scholar]
  2. Chamorovsky S. K., Remennikov S. M., Kononenko A. A., Venediktov P. S., Rubin A. B. New experimental approach to the estimation of rate of electron transfer from the primary to secondary acceptors in the photosynthetic electron transport chain of purple bacteria. Biochim Biophys Acta. 1976 Apr 9;430(1):62–70. doi: 10.1016/0005-2728(76)90222-x. [DOI] [PubMed] [Google Scholar]
  3. Cogdell R. J., Brune D. C., Clayton R. K. Effects of extraction and replacement of ubiquinone upon the photochemical activity of reaction centers and chromatophores from Rhodopseudomonas spheriodes. FEBS Lett. 1974 Sep 1;45(1):344–347. doi: 10.1016/0014-5793(74)80877-x. [DOI] [PubMed] [Google Scholar]
  4. Dutton P. L., Petty K. M., Bonner H. S., Morse S. D. Cytochrome c2 and reaction center of Rhodospeudomonas spheroides Ga. membranes. Extinction coefficients, content, half-reduction potentials, kinetics and electric field alterations. Biochim Biophys Acta. 1975 Jun 17;387(3):536–556. doi: 10.1016/0005-2728(75)90092-4. [DOI] [PubMed] [Google Scholar]
  5. Halsey Y. D., Parson W. W. Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum. Biochim Biophys Acta. 1974 Jun 28;347(3):404–416. doi: 10.1016/0005-2728(74)90079-6. [DOI] [PubMed] [Google Scholar]
  6. Kleinfeld D., Okamura M. Y., Feher G. Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. I. Determination of the charge recombination pathway of D+QAQ(-)B and free energy and kinetic relations between Q(-)AQB and QAQ(-)B. Biochim Biophys Acta. 1984 Jul 27;766(1):126–140. doi: 10.1016/0005-2728(84)90224-x. [DOI] [PubMed] [Google Scholar]
  7. Okamura M. Y., Isaacson R. A., Feher G. Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3491–3495. doi: 10.1073/pnas.72.9.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Parson W. W. The reaction between primary and secondary electron acceptors in bacterial photosynthesis. Biochim Biophys Acta. 1969;189(3):384–396. doi: 10.1016/0005-2728(69)90169-8. [DOI] [PubMed] [Google Scholar]
  9. Rockley M. G., Windsor M. W., Cogdell R. J., Parson W. W. Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2251–2255. doi: 10.1073/pnas.72.6.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Stein R. R., Castellvi A. L., Bogacz J. P., Wraight C. A. Herbicide-quinone competition in the acceptor complex of photosynthetic reaction centers from Rhodopseudomonas sphaeroides: a bacterial model for PS-II-herbicide activity in plants. J Cell Biochem. 1984;24(3):243–259. doi: 10.1002/jcb.240240306. [DOI] [PubMed] [Google Scholar]
  11. Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim Biophys Acta. 1977 Apr 11;460(1):113–125. doi: 10.1016/0005-2728(77)90157-8. [DOI] [PubMed] [Google Scholar]
  12. Vermeglio A., Clayton R. K. Kinetics of electron transfer between the primary and the secondary electron acceptor in reaction centers from Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1977 Jul 7;461(1):159–165. doi: 10.1016/0005-2728(77)90078-0. [DOI] [PubMed] [Google Scholar]
  13. Woodbury N. W., Parson W. W., Gunner M. R., Prince R. C., Dutton P. L. Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphthoquinones or benzoquinones in place of ubiquinone. Biochim Biophys Acta. 1986 Aug 13;851(1):6–22. doi: 10.1016/0005-2728(86)90243-4. [DOI] [PubMed] [Google Scholar]
  14. Wraight C. A. Electron acceptors of bacterial photosynthetic reaction centers. II. H+ binding coupled to secondary electron transfer in the quinone acceptor complex. Biochim Biophys Acta. 1979 Nov 8;548(2):309–327. doi: 10.1016/0005-2728(79)90138-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES