Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Apr;86(8):2737–2741. doi: 10.1073/pnas.86.8.2737

Allozymes of glucose-6-phosphate isomerase differentially modulate pentose-shunt metabolism in the sea anemone Metridium senile.

W E Zamer 1, R J Hoffmann 1
PMCID: PMC286993  PMID: 2565036

Abstract

We tested the hypothesis that kinetic differences among allelic variants of glucose-6-phosphate isomerase (GPI; D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9) from the sea anemone Metridium senile differentially modulate glucose metabolism at the glycolysis-pentose-shunt branch point. Fractional contribution of pentose shunt and absolute flux of glucose in glycolysis were measured in fasted or fed anemones acclimated to 5 degrees C or 15 degrees C. When fed, anemones of genotype Gpiss routed a greater fraction of glucose through the shunt than did Gpiff anemones; the effect was more pronounced at 5 degrees C than at 15 degrees C. This confirms predictions from kinetic and population data and is consistent with thermal selection maintaining the variation. Relative levels of shunt metabolism increased at 5 degrees C, compared with 15 degrees C, in fed anemones regardless of genotype, but the proportion of glucose metabolized by the pentose shunt was unchanged by temperature in fasted anemones. Glucose flux through the shunt was constant at approximately 5 pmol.mg-1.hr-1 in fed anemones at 5 degrees C and 15 degrees C and in fasted anemones at 15 degrees C, indicating apparently near-perfect thermal acclimation of the absolute flux of glucose through the shunt in fed, but not in fasted, anemones. Rates of glucose oxidation and flux through the shunt in freshly collected anemones were similar to those of anemones fed and acclimated at 15 degrees C in the laboratory. If these differences affect organismal-level processes, Gpi variation could contribute to Darwinian fitness in thermally varying environments.

Full text

PDF
2737

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft S. J., Weerasinghe L. C., Bassett J. M., Randle P. J. The pentose cycle and insulin release in mouse pancreatic islets. Biochem J. 1972 Feb;126(3):525–532. doi: 10.1042/bj1260525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burton R. S., Feldman M. W. Physiological effects of an allozyme polymorphism: glutamate-pyruvate transaminase and response to hyperosmotic stress in the copepod Tigriopus californicus. Biochem Genet. 1983 Apr;21(3-4):239–251. doi: 10.1007/BF00499136. [DOI] [PubMed] [Google Scholar]
  3. Cavener D. R., Clegg M. T. Evidence for biochemical and physiological differences between enzyme genotypes in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4444–4447. doi: 10.1073/pnas.78.7.4444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang T. W., Goldberg A. L. The origin of alanine produced in skeletal muscle. J Biol Chem. 1978 May 25;253(10):3677–3684. [PubMed] [Google Scholar]
  5. DiMichele L., Powers D. A. LDH-B genotype-specific hatching times of Fundulus heteroclitus embryos. Nature. 1982 Apr 8;296(5857):563–564. doi: 10.1038/296563a0. [DOI] [PubMed] [Google Scholar]
  6. DiMichele L., Powers D. A. Physiological basis for swimming endurance differences between LDH-B genotypes of Fundulus heteroclitus. Science. 1982 May 28;216(4549):1014–1016. doi: 10.1126/science.7079747. [DOI] [PubMed] [Google Scholar]
  7. Geer B. W., Kamiak S. N., Kidd K. R., Nishimura R. A., Yemm S. J. Regulation of the oxidative NADP-enzyme tissue levels in Drosophila melanogaster. I. Modulation by dietary carbohydrate and lipid. J Exp Zool. 1976 Jan;195(1):15–32. doi: 10.1002/jez.1401950103. [DOI] [PubMed] [Google Scholar]
  8. Hall J. G. Temperature-related kinetic differentiation of glucosephosphate isomerase alleloenzymes isolated from the blue mussel, Mytilus edulis. Biochem Genet. 1985 Oct;23(9-10):705–728. [PubMed] [Google Scholar]
  9. Hilbish T. J., Deaton L. E., Koehn R. K. Effect of an allozyme polymorphism on regulation of cell volume. Nature. 1982 Aug 12;298(5875):688–689. doi: 10.1038/298688a0. [DOI] [PubMed] [Google Scholar]
  10. Hoffmann R. J. Evolutionary genetics of Metridium senile. I. Kinetic differences in phosphoglucose isomerase allozymes. Biochem Genet. 1981 Feb;19(1-2):129–144. doi: 10.1007/BF00486143. [DOI] [PubMed] [Google Scholar]
  11. Hoffmann R. J. Evolutionary genetics of Metridium senile. II. Geographic patterns of allozyme variation. Biochem Genet. 1981 Feb;19(1-2):145–154. doi: 10.1007/BF00486144. [DOI] [PubMed] [Google Scholar]
  12. KATZ J., WOOD H. G. The use of C14O2 yields from glucose-1- and -6-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem. 1963 Feb;238:517–523. [PubMed] [Google Scholar]
  13. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  14. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koehn R. K., Newell R. I., Immermann F. Maintenance of an aminopeptidase allele frequency cline by natural selection. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5385–5389. doi: 10.1073/pnas.77.9.5385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Middleton R. J., Kacser H. Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics. 1983 Nov;105(3):633–650. doi: 10.1093/genetics/105.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Place A. R., Powers D. A. Genetic variation and relative catalytic efficiencies: lactate dehydrogenase B allozymes of Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1979 May;76(5):2354–2358. doi: 10.1073/pnas.76.5.2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Powers D. A., Greaney G. S., Place A. R. Physiological correlation between lactate dehydrogenase genotype and haemoglobin function in killifish. Nature. 1979 Jan 18;277(5693):240–241. doi: 10.1038/277240a0. [DOI] [PubMed] [Google Scholar]
  19. Watt W. B. Adaptation at Specific Loci. II. Demographic and Biochemical Elements in the Maintenance of the Colias Pgi Polymorphism. Genetics. 1983 Apr;103(4):691–724. doi: 10.1093/genetics/103.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Watt W. B. Adaptation at specific loci. I. Natural selection on phosphoglucose isomerase of Colias butterflies: Biochemical and population aspects. Genetics. 1977 Sep;87(1):177–194. doi: 10.1093/genetics/87.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Watt W. B., Boggs C. L. Allelic isozymes as probes of the evolution of metabolic organization. Isozymes Curr Top Biol Med Res. 1987;15:27–47. [PubMed] [Google Scholar]
  22. Watt W. B., Carter P. A., Blower S. M. Adaptation at specific loci. IV. Differential mating success among glycolytic allozyme genotypes of Colias butterflies. Genetics. 1985 Jan;109(1):157–175. doi: 10.1093/genetics/109.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Watt W. B., Cassin R. C., Swan M. S. Adaptation at Specific Loci. III. Field Behavior and Survivorship Differences among Colias Pgi Genotypes Are Predictable from IN VITRO Biochemistry. Genetics. 1983 Apr;103(4):725–739. doi: 10.1093/genetics/103.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Young J. P., Koehn R. K., Arnheim N. Biochemical characterization of "LAP," a polymorphic aminopeptidase from the blue mussel, Mytilus edulis. Biochem Genet. 1979 Apr;17(3-4):305–323. doi: 10.1007/BF00498971. [DOI] [PubMed] [Google Scholar]
  25. Zaba B. N., Davies J. I. The contribution of the pentose phosphate cycle to the central pathways of metabolism in the marine mussel, Mytilus edulis L [proceedings]. Biochem Soc Trans. 1979 Oct;7(5):900–902. doi: 10.1042/bst0070900. [DOI] [PubMed] [Google Scholar]
  26. Zera A. J. Inhibition of phosphoglucose isomerase allozymes from the wing polymorphic waterstrider, Limnoporus canaliculatus, by pentose shunt metabolites. Biochem Genet. 1987 Apr;25(3-4):205–223. doi: 10.1007/BF00499314. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES