Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 May;86(9):3160–3164. doi: 10.1073/pnas.86.9.3160

Harmonic vibrations and thermodynamic stability of a DNA oligomer in monovalent salt solution.

A E García 1, D M Soumpasis 1
PMCID: PMC287086  PMID: 2717613

Abstract

We compute the full harmonic vibrational spectrum and eigenmodes of a DNA oligomer, d(C-G)3, in optimized B and Z conformations in various ionic environments (0.01-5.0 M NaCl). The statistical interactions of DNA with the diffuse ionic cloud surrounding it in solution are approximately represented within the potential of mean force framework. The lowest eigenfrequency of the B conformation is found to drastically decrease with increased NaCl concentration. This suggests that a soft mode mechanism may be a precursor for the B-to-Z conversion. The free energy balance governing the B-Z isomerization of d(C-G)3 is dominated by the solvent-averaged effective phosphate-phosphate interactions due to substantial cancelations between the much larger intramolecular energy contributions.

Full text

PDF
3160

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Hukins D. W. Optimised parameters for A-DNA and B-DNA. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1504–1509. doi: 10.1016/0006-291X(72)90243-4. [DOI] [PubMed] [Google Scholar]
  2. Borah B., Cohen J. S., Howard F. B., Miles H. T. Poly(d2NH2A-dT): two-dimensional NMR shows a B to A conversion in high salt. Biochemistry. 1985 Dec 3;24(25):7456–7462. doi: 10.1021/bi00346a064. [DOI] [PubMed] [Google Scholar]
  3. Eyster J. M., Prohofsky E. W. On the B to A conformation change of the double helix. Biopolymers. 1977 May;16(5):965–982. doi: 10.1002/bip.1977.360160503. [DOI] [PubMed] [Google Scholar]
  4. Garcia AE, Krumhansl JA. Role of the Coulomb interaction in the low-frequency density of states of DNA double helices. Phys Rev A Gen Phys. 1988 Jun 15;37(12):4875–4878. doi: 10.1103/physreva.37.4875. [DOI] [PubMed] [Google Scholar]
  5. Irikura K. K., Tidor B., Brooks B. R., Karplus M. Transition from B to Z DNA: contribution of internal fluctuations to the configurational entropy difference. Science. 1985 Aug 9;229(4713):571–572. doi: 10.1126/science.3839596. [DOI] [PubMed] [Google Scholar]
  6. Kopka M. L., Fratini A. V., Drew H. R., Dickerson R. E. Ordered water structure around a B-DNA dodecamer. A quantitative study. J Mol Biol. 1983 Jan 5;163(1):129–146. doi: 10.1016/0022-2836(83)90033-5. [DOI] [PubMed] [Google Scholar]
  7. Lindsay S. M., Lee S. A., Powell J. W., Weidlich T., DeMarco C., Lewen G. D., Tao N. J., Rupprecht A. The origin of the A to B transition in DNA fibers and films. Biopolymers. 1988 Jun;27(6):1015–1043. doi: 10.1002/bip.360270610. [DOI] [PubMed] [Google Scholar]
  8. Pohl F. M. Thermodynamics of the helix-coil transition of (dG-dC) oligomers. Eur J Biochem. 1974 Mar 1;42(2):495–504. doi: 10.1111/j.1432-1033.1974.tb03364.x. [DOI] [PubMed] [Google Scholar]
  9. Seibel G. L., Singh U. C., Kollman P. A. A molecular dynamics simulation of double-helical B-DNA including counterions and water. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6537–6540. doi: 10.1073/pnas.82.19.6537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Singh U. C., Weiner S. J., Kollman P. Molecular dynamics simulations of d(C-G-C-G-A) X d(T-C-G-C-G) with and without "hydrated" counterions. Proc Natl Acad Sci U S A. 1985 Feb;82(3):755–759. doi: 10.1073/pnas.82.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Soumpasis D. M., Robert-Nicoud M., Jovin T. M. B-Z DNA conformational transition in 1:1 electrolytes: dependence upon counterion size. FEBS Lett. 1987 Mar 23;213(2):341–344. doi: 10.1016/0014-5793(87)81519-3. [DOI] [PubMed] [Google Scholar]
  12. Soumpasis D. M. Statistical mechanics of the B----Z transition of DNA: contribution of diffuse ionic interactions. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5116–5120. doi: 10.1073/pnas.81.16.5116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Soumpasis D. M., Wiechen J., Jovin T. M. Relative stabilities and transitions of DNA conformations in 1:1 electrolytes: a theoretical study. J Biomol Struct Dyn. 1987 Feb;4(4):535–552. doi: 10.1080/07391102.1987.10507658. [DOI] [PubMed] [Google Scholar]
  14. Tidor B., Irikura K. K., Brooks B. R., Karplus M. Dynamics of DNA oligomers. J Biomol Struct Dyn. 1983 Oct;1(1):231–252. doi: 10.1080/07391102.1983.10507437. [DOI] [PubMed] [Google Scholar]
  15. Trifonov E. N. Sequence-dependent variations of B-DNA structure and protein-DNA recognition. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):271–278. doi: 10.1101/sqb.1983.047.01.032. [DOI] [PubMed] [Google Scholar]
  16. Urabe H., Tominaga Y. Low-lying collective modes of DNA double helix by Raman spectroscopy. Biopolymers. 1982 Dec;21(12):2477–2481. doi: 10.1002/bip.360211212. [DOI] [PubMed] [Google Scholar]
  17. Van Gunsteren W. F., Berendsen H. J., Geurtsen R. G., Zwinderman H. R. A molecular dynamics computer simulation of an eight-base-pair DNA fragment in aqueous solution: comparison with experimental two-dimensional NMR data. Ann N Y Acad Sci. 1986;482:287–303. doi: 10.1111/j.1749-6632.1986.tb20962.x. [DOI] [PubMed] [Google Scholar]
  18. Wang A. J., Quigley G. J., Kolpak F. J., van der Marel G., van Boom J. H., Rich A. Left-handed double helical DNA: variations in the backbone conformation. Science. 1981 Jan 9;211(4478):171–176. doi: 10.1126/science.7444458. [DOI] [PubMed] [Google Scholar]
  19. Weber G. Energetics of ligand binding to proteins. Adv Protein Chem. 1975;29:1–83. doi: 10.1016/s0065-3233(08)60410-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES