Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 May;86(9):3184–3188. doi: 10.1073/pnas.86.9.3184

Differentiation-dependent expression of phosphatidylserine in mammalian plasma membranes: quantitative assessment of outer-leaflet lipid by prothrombinase complex formation.

J Connor 1, C Bucana 1, I J Fidler 1, A J Schroit 1
PMCID: PMC287091  PMID: 2717615

Abstract

Phosphatidylserine (PS) is asymmetrically distributed in mammalian cell membranes, being preferentially localized in the inner leaflet. Some studies have suggested that a disturbance in the normal asymmetric distribution of PS--e.g., PS exposure in the outer leaflet of the cell membrane, which can occur upon platelet activation as well as in certain pathologic red cells--serves as a potent procoagulant surface and as a signal for triggering their recognition by macrophages. These studies suggest that the regulation of PS distribution in cell membranes may be critical in controlling coagulation and in determining the survival of pathologic cells in the circulation. In this paper we describe a sensitive technique, based on PS-dependent prothrombinase complex activity, for assessing the amount of PS on the external leaflet of intact viable cells. Our results indicate that tumorigenic, undifferentiated murine erythroleukemic cells express 7- to 8-fold more PS in their outer leaflet than do their differentiated, nontumorigenic counterparts. Increased expression of PS in the tumorigenic cells directly correlated with their ability to be recognized and bound by macrophages.

Full text

PDF
3184

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar R. S., Deamer D. W., Cornwell D. G. Surface area of human erythrocyte lipids: reinvestigation of experiments on plasma membrane. Science. 1966 Aug 26;153(3739):1010–1012. doi: 10.1126/science.153.3739.1010. [DOI] [PubMed] [Google Scholar]
  2. Bevers E. M., Comfurius P., Zwaal R. F. Changes in membrane phospholipid distribution during platelet activation. Biochim Biophys Acta. 1983 Dec 7;736(1):57–66. doi: 10.1016/0005-2736(83)90169-4. [DOI] [PubMed] [Google Scholar]
  3. Bevers E. M., Comfurius P., van Rijn J. L., Hemker H. C., Zwaal R. F. Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur J Biochem. 1982 Feb;122(2):429–436. doi: 10.1111/j.1432-1033.1982.tb05898.x. [DOI] [PubMed] [Google Scholar]
  4. Bucana C. D., Hoyer L. C., Schroit A. J., Kleinerman E., Fidler I. J. Ultrastructural studies of the interaction between liposome-activated human blood monocytes and allogeneic tumor cells in vitro. Am J Pathol. 1983 Jul;112(1):101–111. [PMC free article] [PubMed] [Google Scholar]
  5. Chiu D., Lubin B., Shohet S. B. Erythrocyte membrane lipid reorganization during the sickling process. Br J Haematol. 1979 Feb;41(2):223–234. doi: 10.1111/j.1365-2141.1979.tb05851.x. [DOI] [PubMed] [Google Scholar]
  6. Cohen A. M., Liu S. C., Lawler J., Derick L., Palek J. Identification of the protein 4.1 binding site to phosphatidylserine vesicles. Biochemistry. 1988 Jan 26;27(2):614–619. doi: 10.1021/bi00402a018. [DOI] [PubMed] [Google Scholar]
  7. Comfurius P., Zwaal R. F. The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. Biochim Biophys Acta. 1977 Jul 20;488(1):36–42. doi: 10.1016/0005-2760(77)90120-5. [DOI] [PubMed] [Google Scholar]
  8. Connor J., Schroit A. J. Transbilayer movement of phosphatidylserine in erythrocytes: inhibition of transport and preferential labeling of a 31,000-dalton protein by sulfhydryl reactive reagents. Biochemistry. 1988 Feb 9;27(3):848–851. doi: 10.1021/bi00403a002. [DOI] [PubMed] [Google Scholar]
  9. Demel R. A., Geurts van Kessel W. S., Zwaal R. F., Roelofsen B., van Deenen L. L. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim Biophys Acta. 1975 Sep 16;406(1):97–107. doi: 10.1016/0005-2736(75)90045-0. [DOI] [PubMed] [Google Scholar]
  10. Fibach E., Reuben R. C., Rifkind R. A., Marks P. A. Effect of hexamethylene bisacetamide on the commitment to differentiation of murine erythroleukemia cells. Cancer Res. 1977 Feb;37(2):440–444. [PubMed] [Google Scholar]
  11. Fidler I. J. Macrophages and metastasis--a biological approach to cancer therapy. Cancer Res. 1985 Oct;45(10):4714–4726. [PubMed] [Google Scholar]
  12. Franck P. F., Bevers E. M., Lubin B. H., Comfurius P., Chiu D. T., Op den Kamp J. A., Zwaal R. F., van Deenen L. L., Roelofsen B. Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells. J Clin Invest. 1985 Jan;75(1):183–190. doi: 10.1172/JCI111672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glenney J., Glenney P. Co-expression of spectrin and fodrin in Friend erythroleukemic cells treated with DMSO. Exp Cell Res. 1984 May;152(1):15–21. doi: 10.1016/0014-4827(84)90225-8. [DOI] [PubMed] [Google Scholar]
  14. Gordesky S. E., Marinetti G. V., Love R. The reaction of chemical probes with the erythrocyte membrane. J Membr Biol. 1975;20(1-2):111–132. doi: 10.1007/BF01870631. [DOI] [PubMed] [Google Scholar]
  15. Haest C. W. Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Biochim Biophys Acta. 1982 Dec;694(4):331–352. doi: 10.1016/0304-4157(82)90001-6. [DOI] [PubMed] [Google Scholar]
  16. Koff W. C., Showalter S. D., Seniff D. A., Hampar B. Lysis of herpesvirus-infected cells by macrophages activated with free or liposome-encapsulated lymphokine produced by a murine T cell hybridoma. Infect Immun. 1983 Dec;42(3):1067–1072. doi: 10.1128/iai.42.3.1067-1072.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koury M. J., Bondurant M. C., Mueller T. J. The role of erythropoietin in the production of principal erythrocyte proteins other than hemoglobin during terminal erythroid differentiation. J Cell Physiol. 1986 Feb;126(2):259–265. doi: 10.1002/jcp.1041260216. [DOI] [PubMed] [Google Scholar]
  18. Krishnaswamy S., Jones K. C., Mann K. G. Prothrombinase complex assembly. Kinetic mechanism of enzyme assembly on phospholipid vesicles. J Biol Chem. 1988 Mar 15;263(8):3823–3834. [PubMed] [Google Scholar]
  19. Lubin B., Chiu D., Bastacky J., Roelofsen B., Van Deenen L. L. Abnormalities in membrane phospholipid organization in sickled erythrocytes. J Clin Invest. 1981 Jun;67(6):1643–1649. doi: 10.1172/JCI110200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marks P. A., Chen Z., Banks J., Rifkind R. A. Erythroleukemia cells: variants inducible for hemoglobin synthesis without commitment to terminal cell division. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2281–2284. doi: 10.1073/pnas.80.8.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marks P. A., Rifkind R. A. Erythroleukemic differentiation. Annu Rev Biochem. 1978;47:419–448. doi: 10.1146/annurev.bi.47.070178.002223. [DOI] [PubMed] [Google Scholar]
  22. Mason J. T., Huang C. Hydrodynamic analysis of egg phosphatidylcholine vesicles. Ann N Y Acad Sci. 1978;308:29–49. doi: 10.1111/j.1749-6632.1978.tb22012.x. [DOI] [PubMed] [Google Scholar]
  23. Nesheim M. E., Myrmel K. H., Hibbard L., Mann K. G. Isolation and characterization of single chain bovine factor V. J Biol Chem. 1979 Jan 25;254(2):508–517. [PubMed] [Google Scholar]
  24. Nijhof W., van der Schaft P. H., Wierenga P. K., Roelofsen B., Op den Kamp J. A., van Deenen L. L. The transbilayer distribution of phosphatidylethanolamine in erythroid plasma membranes during erythropoiesis. Biochim Biophys Acta. 1986 Nov 17;862(2):273–277. doi: 10.1016/0005-2736(86)90228-2. [DOI] [PubMed] [Google Scholar]
  25. Op den Kamp J. A. Lipid asymmetry in membranes. Annu Rev Biochem. 1979;48:47–71. doi: 10.1146/annurev.bi.48.070179.000403. [DOI] [PubMed] [Google Scholar]
  26. PARSONS J., WYCOFF H. D. Chromatographic microassay for cholesterol and cholesterol esters. Science. 1957 Feb 22;125(3243):347–348. doi: 10.1126/science.125.3243.347. [DOI] [PubMed] [Google Scholar]
  27. Rawyler A. J., Roelofsen B., Op den Kamp J. A., Van Deenen L. L. Isolation and characterization of plasma membranes from Friend erythroleukaemic cells. A study with sphingomyelinase C. Biochim Biophys Acta. 1983 Apr 21;730(1):130–138. doi: 10.1016/0005-2736(83)90325-5. [DOI] [PubMed] [Google Scholar]
  28. Rawyler A., van der Schaft P. H., Roelofsen B., Op den Kamp J. A. Phospholipid localization in the plasma membrane of Friend erythroleukemic cells and mouse erythrocytes. Biochemistry. 1985 Mar 26;24(7):1777–1783. doi: 10.1021/bi00328a031. [DOI] [PubMed] [Google Scholar]
  29. Raz A., Bucana C., Fogler W. E., Poste G., Fidler I. J. Biochemical, morphological, and ultrastructural studies on the uptake of liposomes by murine macrophages. Cancer Res. 1981 Feb;41(2):487–494. [PubMed] [Google Scholar]
  30. Rosing J., Speijer H., Zwaal R. F. Prothrombin activation on phospholipid membranes with positive electrostatic potential. Biochemistry. 1988 Jan 12;27(1):8–11. doi: 10.1021/bi00401a002. [DOI] [PubMed] [Google Scholar]
  31. Rosing J., Tans G., Govers-Riemslag J. W., Zwaal R. F., Hemker H. C. The role of phospholipids and factor Va in the prothrombinase complex. J Biol Chem. 1980 Jan 10;255(1):274–283. [PubMed] [Google Scholar]
  32. Saiki I., Fidler I. J. Synergistic activation by recombinant mouse interferon-gamma and muramyl dipeptide of tumoricidal properties in mouse macrophages. J Immunol. 1985 Jul;135(1):684–688. [PubMed] [Google Scholar]
  33. Schroeder F. Fluorescence probes in metastatic B16 melanoma membranes. Biochim Biophys Acta. 1984 Oct 3;776(2):299–312. doi: 10.1016/0005-2736(84)90219-0. [DOI] [PubMed] [Google Scholar]
  34. Schroit A. J., Fidler I. J. Effects of liposome structure and lipid composition on the activation of the tumoricidal properties of macrophages by liposomes containing muramyl dipeptide. Cancer Res. 1982 Jan;42(1):161–167. [PubMed] [Google Scholar]
  35. Schroit A. J., Madsen J. W., Tanaka Y. In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes. J Biol Chem. 1985 Apr 25;260(8):5131–5138. [PubMed] [Google Scholar]
  36. Schwartz R. S., Tanaka Y., Fidler I. J., Chiu D. T., Lubin B., Schroit A. J. Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes. J Clin Invest. 1985 Jun;75(6):1965–1972. doi: 10.1172/JCI111913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tanaka Y., Schroit A. J. Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages. J Biol Chem. 1983 Sep 25;258(18):11335–11343. [PubMed] [Google Scholar]
  38. Van der Schaft P. H., Roelofsen B., Op den Kamp J. A., Van Deenen L. L. Phospholipid asymmetry during erythropoiesis. A study on Friend erythroleukemic cells and mouse reticulocytes. Biochim Biophys Acta. 1987 Jun 12;900(1):103–115. doi: 10.1016/0005-2736(87)90282-3. [DOI] [PubMed] [Google Scholar]
  39. Verkleij A. J., Zwaal R. F., Roelofsen B., Comfurius P., Kastelijn D., van Deenen L. L. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta. 1973 Oct 11;323(2):178–193. doi: 10.1016/0005-2736(73)90143-0. [DOI] [PubMed] [Google Scholar]
  40. Zwaal R. F., Hemker H. C. Blood cell membranes and haemostasis. Haemostasis. 1982;11(1):12–39. doi: 10.1159/000214638. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES