Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 May;86(9):3404–3408. doi: 10.1073/pnas.86.9.3404

Unique properties of non-N-methyl-D-aspartate excitatory responses in cultured purkinje neurons.

M Joels 1, A J Yool 1, D L Gruol 1
PMCID: PMC287141  PMID: 2470102

Abstract

Cerebellar Purkinje neurons respond to glutamate and to the agonists quisqualate (QA) and kainate (KA) with prolonged, multiphasic, voltage-dependent depolarizations. In contrast, N-methyl-D-aspartate (NMDA) at equivalent doses is not effective as an agonist for Purkinje neurons. The responses to QA and KA are reduced by extracellular Cd2+ (30 microM), by increased Mg2+ or Ca2+ (12 mM), and by the glutamate antagonist kynurenic acid (1 mM) but not by the NMDA-selective antagonist 2-amino-5-phosphonovalerate (100 microM). The short pressure application of 1 microM QA (less than or equal to 0.5 s) produces a response often exceeding 1 min in duration, which consists of several phases: rapid initial depolarization, followed by a long plateau, repolarization, and a subsequent small hyperpolarization. A similar response is evoked by glutamate and KA at higher doses (30-50 microM). The initial and plateau depolarizations are dependent on Na+, being reduced by substitution of external Na+ with sucrose or choline, but are not affected by the Na+ channel blocker tetrodotoxin. Rectification, observed at hyperpolarized potentials below -60 mV set by current clamp, is attributed in part to an intrinsic voltage sensitivity of the agonist-activated response. Both the duration and the magnitude of the excitatory responses were found to be voltage-dependent. Single-channel recordings of a Ca2+-sensitive K+ channel, activated selectively during the excitatory response, suggest that intracellular Ca2+ increases during the plateau phase. Certain properties of the excitatory responses in the Purkinje neuron resemble those associated with NMDA-receptor activation in other regions of the central nervous system, including voltage-sensitive rectification, blockade by divalent cations, and the induction of increased intracellular Ca2+ during the excitatory response. These unique properties may enable the Purkinje neuron to express both rapid and long-term effects of glutamatergic transmission with non-NMDA receptors alone.

Full text

PDF
3404

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascher P., Nowak L. Quisqualate- and kainate-activated channels in mouse central neurones in culture. J Physiol. 1988 May;399:227–245. doi: 10.1113/jphysiol.1988.sp017077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ault B., Evans R. H., Francis A. A., Oakes D. J., Watkins J. C. Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations. J Physiol. 1980 Oct;307:413–428. doi: 10.1113/jphysiol.1980.sp013443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Connor J. A., Wadman W. J., Hockberger P. E., Wong R. K. Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science. 1988 Apr 29;240(4852):649–653. doi: 10.1126/science.2452481. [DOI] [PubMed] [Google Scholar]
  4. Crepel F., Dhanjal S. S., Sears T. A. Effect of glutamate, aspartate and related derivatives on cerebellar purkinje cell dendrites in the rat: an in vitro study. J Physiol. 1982 Aug;329:297–317. doi: 10.1113/jphysiol.1982.sp014304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ganong A. H., Lanthorn T. H., Cotman C. W. Kynurenic acid inhibits synaptic and acidic amino acid-induced responses in the rat hippocampus and spinal cord. Brain Res. 1983 Aug 22;273(1):170–174. doi: 10.1016/0006-8993(83)91108-3. [DOI] [PubMed] [Google Scholar]
  6. Garthwaite J., Balázs R. Supersensitivity to the cyclic GMP response to glutamate during cerebellar maturation. Nature. 1978 Sep 28;275(5678):328–329. doi: 10.1038/275328a0. [DOI] [PubMed] [Google Scholar]
  7. Gruol D. L., Crimi C. P. Morphological and physiological properties of rat cerebellar neurons in mature and developing cultures. Brain Res. 1988 Jun 1;469(1-2):135–146. doi: 10.1016/0165-3806(88)90177-0. [DOI] [PubMed] [Google Scholar]
  8. Gruol D. L., Franklin C. L. Morphological and physiological differentiation of Purkinje neurons in cultures of rat cerebellum. J Neurosci. 1987 May;7(5):1271–1293. doi: 10.1523/JNEUROSCI.07-05-01271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hanke W., Cook N. J., Kaupp U. B. cGMP-dependent channel protein from photoreceptor membranes: single-channel activity of the purified and reconstituted protein. Proc Natl Acad Sci U S A. 1988 Jan;85(1):94–98. doi: 10.1073/pnas.85.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987 Feb 5;325(6104):529–531. doi: 10.1038/325529a0. [DOI] [PubMed] [Google Scholar]
  11. Kano M., Kato M. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature. 1987 Jan 15;325(6101):276–279. doi: 10.1038/325276a0. [DOI] [PubMed] [Google Scholar]
  12. Llinás R., Sugimori M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol. 1980 Aug;305:197–213. doi: 10.1113/jphysiol.1980.sp013358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Llinás R., Sugimori M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol. 1980 Aug;305:171–195. doi: 10.1113/jphysiol.1980.sp013357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MacDermott A. B., Mayer M. L., Westbrook G. L., Smith S. J., Barker J. L. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. 1986 May 29-Jun 4Nature. 321(6069):519–522. doi: 10.1038/321519a0. [DOI] [PubMed] [Google Scholar]
  15. Mayer M. L., Westbrook G. L. Mixed-agonist action of excitatory amino acids on mouse spinal cord neurones under voltage clamp. J Physiol. 1984 Sep;354:29–53. doi: 10.1113/jphysiol.1984.sp015360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mayer M. L., Westbrook G. L. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol. 1987 Dec;394:501–527. doi: 10.1113/jphysiol.1987.sp016883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mayer M. L., Westbrook G. L. The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture. J Physiol. 1985 Apr;361:65–90. doi: 10.1113/jphysiol.1985.sp015633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mayer M. L., Westbrook G. L. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol. 1987;28(3):197–276. doi: 10.1016/0301-0082(87)90011-6. [DOI] [PubMed] [Google Scholar]
  19. Murphy S. N., Thayer S. A., Miller R. J. The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro. J Neurosci. 1987 Dec;7(12):4145–4158. doi: 10.1523/JNEUROSCI.07-12-04145.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
  21. Sekiguchi M., Okamoto K., Sakai Y. NMDA-receptors on Purkinje cell dendrites in guinea pig cerebellar slices. Brain Res. 1987 Dec 29;437(2):402–406. doi: 10.1016/0006-8993(87)91661-1. [DOI] [PubMed] [Google Scholar]
  22. Sugiyama H., Ito I., Hirono C. A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature. 1987 Feb 5;325(6104):531–533. doi: 10.1038/325531a0. [DOI] [PubMed] [Google Scholar]
  23. Watkins J. C., Evans R. H. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol. 1981;21:165–204. doi: 10.1146/annurev.pa.21.040181.001121. [DOI] [PubMed] [Google Scholar]
  24. Yool A. J., Dionne V. E., Gruol D. L. Developmental changes in K+-selective channel activity during differentiation of the Purkinje neuron in culture. J Neurosci. 1988 Jun;8(6):1971–1980. doi: 10.1523/JNEUROSCI.08-06-01971.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES