Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 May;86(10):3452–3455. doi: 10.1073/pnas.86.10.3452

Theory of hexagonal and stripe phases in monolayers

Harden M McConnell 1
PMCID: PMC287154  PMID: 16594039

Abstract

Epifluorescence microscopy can be used to visualize the shapes of solid lipid domains in two-phase regions of monolayers at the air—water interface. The shapes of certain lipid domains result from a competition between a one-dimensional line tension and long-range intermolecular electrostatic repulsion. Under specified conditions, a finite two-dimensional domain with one shape can undergo a sharp transition to a second shape, as the area of the domain is changed. Two-dimensional infinite arrays of domains can also have transitions involving changes in the shapes and patterns of domains, such as the stripe to hexagonal phase transition [Andelman, D., Brochard, F. & Joanny, J. F. (1987) J. Chem. Phys. 86, 3673-3681]. The present paper treats the hexagonal and stripe phases with the same approximations and methods of calculation as used previously for the isolated, finite domains. It is shown that one effect of electrostatic repulsion between domains is to cause these domains to increase in size as they approach one another on monolayer compression. It is also shown that there can be two distinct conditions where the hexagonal and stripe phases coexist.

Keywords: Langmuir—Blodgett films, phospholipids, two-dimensional systems, long-range forces

Full text

PDF
3452

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hainaut J., Joussemet M., Nicolas J. Inhibition par la kallicréine de l'expression du récepteur lymphocytaire des rosettes E. Prévention de cet effet par l'alpha-2-macroglobuline. C R Acad Sci III. 1985;301(15):675–677. [PubMed] [Google Scholar]
  2. Heckl W. M., Lösche M., Cadenhead D. A., Möhwald H. Electrostatically induced growth of spiral lipid domains in the presence of cholesterol. Eur Biophys J. 1986;14(1):11–17. doi: 10.1007/BF00260398. [DOI] [PubMed] [Google Scholar]
  3. Lösche M., Möhwald H. Impurity controlled phase transitions of phospholipid monolayers. Eur Biophys J. 1984;11(1):35–42. doi: 10.1007/BF00253856. [DOI] [PubMed] [Google Scholar]
  4. McConnell H. M., Tamm L. K., Weis R. M. Periodic structures in lipid monolayer phase transitions. Proc Natl Acad Sci U S A. 1984 May;81(10):3249–3253. doi: 10.1073/pnas.81.10.3249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Peters R., Beck K. Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7183–7187. doi: 10.1073/pnas.80.23.7183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Weis R. M., McConnell H. M. Two-dimensional chiral crystals of phospholipid. Nature. 1984 Jul 5;310(5972):47–49. doi: 10.1038/310047a0. [DOI] [PubMed] [Google Scholar]
  7. von Tscharner V., McConnell H. M. An alternative view of phospholipid phase behavior at the air-water interface. Microscope and film balance studies. Biophys J. 1981 Nov;36(2):409–419. doi: 10.1016/S0006-3495(81)84740-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES