Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 May;86(10):3479–3483. doi: 10.1073/pnas.86.10.3479

Plasmenylethanolamine is the major storage depot for arachidonic acid in rabbit vascular smooth muscle and is rapidly hydrolyzed after angiotensin II stimulation.

D A Ford 1, R W Gross 1
PMCID: PMC287161  PMID: 2498871

Abstract

The present study demonstrates that rabbit aortic intimal smooth muscle cells contain the majority of their endogenous arachidonic acid mass in plasmenylethanolamine molecular species. To demonstrate the potential significance of these plasmenylethanolamines as substrates for the smooth muscle cell phospholipases that are activated during agonist stimulation, aortic rings were prelabeled with [3H]arachidonic acid and stimulated with angiotensin II. Although the specific activities of the choline and inositol glycerophospholipid pools were similar after the labeling interval, ethanolamine glycerophospholipids had a specific activity of only 20% of the specific activity of choline and inositol glycerophospholipids. Despite the marked disparity in the specific activities of these three phospholipid classes, angiotensin II stimulation resulted in similar fractional losses (35-41%) of [3H]arachidonic acid from vascular smooth muscle choline, ethanolamine, and inositol glycerophospholipid classes. Reverse-phase HPLC demonstrated that greater than 60% of the [3H]arachidonic acid released from ethanolamine glycerophospholipids after angiotensin II stimulation originated from plasmenylethanolamine molecular species. Taken together, the results demonstrate that the major phospholipid storage depot for arachidonic acid in vascular smooth muscle cells are plasmenylethanolamine molecular species which are important substrates for the phospholipase(s) that are activated during agonist stimulation.

Full text

PDF
3479

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bell R. L., Kennerly D. A., Stanford N., Majerus P. W. Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3238–3241. doi: 10.1073/pnas.76.7.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blank M. L., Cress E. A., Lee P., Stephens N., Piantadosi C., Snyder F. Quantitative analysis of ether-linked lipids as alkyl- and alk-1-enyl-glycerol benzoates by high-performance liquid chromatography. Anal Biochem. 1983 Sep;133(2):430–436. doi: 10.1016/0003-2697(83)90105-7. [DOI] [PubMed] [Google Scholar]
  4. Bretherton K. N., Day A. J., Skinner S. L. Hypertension-accelerated atherogenesis in cholesterol-fed rabbits. Atherosclerosis. 1977 May;27(1):79–87. doi: 10.1016/0021-9150(77)90027-2. [DOI] [PubMed] [Google Scholar]
  5. Brown M. L., Jakubowski J. A., Leventis L. L., Deykin D. Ionophore-induced metabolism of phospholipids and eicosanoid production in porcine aortic endothelial cells: selective release of arachidonic acid from diacyl and ether phospholipids. Biochim Biophys Acta. 1987 Sep 25;921(2):159–166. doi: 10.1016/0005-2760(87)90014-2. [DOI] [PubMed] [Google Scholar]
  6. Daniel L. W., King L., Waite M. Source of arachidonic acid for prostaglandin synthesis in Madin-Darby canine kidney cells. J Biol Chem. 1981 Dec 25;256(24):12830–12835. [PubMed] [Google Scholar]
  7. Derian C. K., Moskowitz M. A. Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments. Bradykinin-2 receptor stimulation is calcium-independent. J Biol Chem. 1986 Mar 15;261(8):3831–3837. [PubMed] [Google Scholar]
  8. Griendling K. K., Rittenhouse S. E., Brock T. A., Ekstein L. S., Gimbrone M. A., Jr, Alexander R. W. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem. 1986 May 5;261(13):5901–5906. [PubMed] [Google Scholar]
  9. Grillone L. R., Clark M. A., Godfrey R. W., Stassen F., Crooke S. T. Vasopressin induces V1 receptors to activate phosphatidylinositol- and phosphatidylcholine-specific phospholipase C and stimulates the release of arachidonic acid by at least two pathways in the smooth muscle cell line, A-10. J Biol Chem. 1988 Feb 25;263(6):2658–2663. [PubMed] [Google Scholar]
  10. Gross R. W. High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. Biochemistry. 1984 Jan 3;23(1):158–165. doi: 10.1021/bi00296a026. [DOI] [PubMed] [Google Scholar]
  11. Gross R. W. Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochemistry. 1985 Mar 26;24(7):1662–1668. doi: 10.1021/bi00328a014. [DOI] [PubMed] [Google Scholar]
  12. Hojvat S. A., Musch M. W., Miller R. J. Stimulation of prostaglandin production in rabbit ileal mucosa by bradykinin. J Pharmacol Exp Ther. 1983 Sep;226(3):749–755. [PubMed] [Google Scholar]
  13. Kawaguchi H., Yasuda H. Platelet-activating factor stimulates prostaglandin synthesis in cultured cells. Hypertension. 1986 Mar;8(3):192–197. doi: 10.1161/01.hyp.8.3.192. [DOI] [PubMed] [Google Scholar]
  14. Loeb L. A., Gross R. W. Identification and purification of sheep platelet phospholipase A2 isoforms. Activation by physiologic concentrations of calcium ion. J Biol Chem. 1986 Aug 15;261(23):10467–10470. [PubMed] [Google Scholar]
  15. McIntyre T. M., Zimmerman G. A., Satoh K., Prescott S. M. Cultured endothelial cells synthesize both platelet-activating factor and prostacyclin in response to histamine, bradykinin, and adenosine triphosphate. J Clin Invest. 1985 Jul;76(1):271–280. doi: 10.1172/JCI111957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moncada S., Vane J. R. The role of prostacyclin in vascular tissue. Fed Proc. 1979 Jan;38(1):66–71. [PubMed] [Google Scholar]
  17. Needleman P., Kaley G. Cardiac and coronary prostaglandin synthesis and function. N Engl J Med. 1978 May 18;298(20):1122–1128. doi: 10.1056/NEJM197805182982005. [DOI] [PubMed] [Google Scholar]
  18. Pak J. H., Bork V. P., Norberg R. E., Creer M. H., Wolf R. A., Gross R. W. Disparate molecular dynamics of plasmenylcholine and phosphatidylcholine bilayers. Biochemistry. 1987 Jul 28;26(15):4824–4830. doi: 10.1021/bi00389a033. [DOI] [PubMed] [Google Scholar]
  19. Pitts B. J., Okhuysen C. H. Effects of palmitoyl carnitine and LPC on cardiac sarcolemmal Na+-K+-ATPase. Am J Physiol. 1984 Nov;247(5 Pt 2):H840–H846. doi: 10.1152/ajpheart.1984.247.5.H840. [DOI] [PubMed] [Google Scholar]
  20. Prescott S. M., Majerus P. W. Characterization of 1,2-diacylglycerol hydrolysis in human platelets. Demonstration of an arachidonoyl-monoacylglycerol intermediate. J Biol Chem. 1983 Jan 25;258(2):764–769. [PubMed] [Google Scholar]
  21. Rittenhouse-Simmons S., Russell R. A., Deykin D. Transfer of arachidonic acid to human platelet plasmalogen in response to thrombin. Biochem Biophys Res Commun. 1976 May 3;70(1):295–301. doi: 10.1016/0006-291x(76)91141-4. [DOI] [PubMed] [Google Scholar]
  22. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wolf R. A., Gross R. W. Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium. J Biol Chem. 1985 Jun 25;260(12):7295–7303. [PubMed] [Google Scholar]
  24. van den Bosch H. Intracellular phospholipases A. Biochim Biophys Acta. 1980 Sep 30;604(2):191–246. doi: 10.1016/0005-2736(80)90574-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES