Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 May;86(10):3758–3762. doi: 10.1073/pnas.86.10.3758

Specific inhibition of cell-surface T-cell receptor expression by antisense oligodeoxynucleotides and its effect on the production of an antigen-specific regulatory T-cell factor.

H Zheng 1, B M Sahai 1, P Kilgannon 1, A Fotedar 1, D R Green 1
PMCID: PMC287219  PMID: 2524832

Abstract

We have used antisense oligodeoxynucleotides corresponding to genes encoding the variable (V) region of the T-cell receptor (TCR) alpha and beta chains (V alpha and V beta) to control TCR expression in T-cell hybridomas. Two hybridomas, A1.1 and B1.1, recognize a synthetic polypeptide antigen designated poly 18 (poly[Glu-Tyr-Lys-(Glu-Tyr-Ala)5]) together with I-Ad. We have found that TCR function (production of lymphokines in response to antigen) and T3 expression were removed after protease treatment of the cells and were fully recovered 48 hr later. However, when antisense oligodeoxynucleotides corresponding to the appropriate TCR V genes were present after protease treatment, little or no recovery of TCR function or T3 expression was observed. This effect was specific for the TCR V genes utilized by the T cell: antisense oligodeoxynucleotides corresponding to the TCR V regions of A1.1 had no effect on TCR expression in B1.1 and vice versa. Thus, antisense oligodeoxynucleotides can be used to temporarily block expression of a TCR gene in a T-cell hybridoma. This technique was then applied to a paradoxical phenomenon in A1.1 cells. We had observed previously that A1.1 releases an antigen-specific immunoregulatory activity that shows the same antigenic fine specificity as is displayed by the TCR of A1.1. We now report that antisense oligodeoxynucleotides corresponding to the A1.1 V alpha gene blocked the production of this soluble antigen-specific activity by the cell. Antisense oligodeoxynucleotides corresponding to A1.1 V beta, on the other hand, had no effect on the production of this antigen-specific activity. We discuss these observations in the context of recent findings on the nature of T cell-derived antigen-specific regulatory factors.

Full text

PDF
3758

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arden B., Klotz J. L., Siu G., Hood L. E. Diversity and structure of genes of the alpha family of mouse T-cell antigen receptor. 1985 Aug 29-Sep 4Nature. 316(6031):783–787. doi: 10.1038/316783a0. [DOI] [PubMed] [Google Scholar]
  2. Barth R. K., Kim B. S., Lan N. C., Hunkapiller T., Sobieck N., Winoto A., Gershenfeld H., Okada C., Hansburg D., Weissman I. L. The murine T-cell receptor uses a limited repertoire of expressed V beta gene segments. Nature. 1985 Aug 8;316(6028):517–523. doi: 10.1038/316517a0. [DOI] [PubMed] [Google Scholar]
  3. Bluestone J. A., Pardoll D., Sharrow S. O., Fowlkes B. J. Characterization of murine thymocytes with CD3-associated T-cell receptor structures. Nature. 1987 Mar 5;326(6108):82–84. doi: 10.1038/326082a0. [DOI] [PubMed] [Google Scholar]
  4. Clevers H., Alarcon B., Wileman T., Terhorst C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Annu Rev Immunol. 1988;6:629–662. doi: 10.1146/annurev.iy.06.040188.003213. [DOI] [PubMed] [Google Scholar]
  5. Cone R. E., Zheng H. G., Chue B., Beaman K., Ferguson T., Green D. R. T cell-derived antigen binding molecules (TABM): molecular and functional properties. Int Rev Immunol. 1988 Apr;3(3):205–228. doi: 10.3109/08830188809051189. [DOI] [PubMed] [Google Scholar]
  6. De Santis R., Givol D., Hsu P. L., Adorini L., Doria G., Appella E. Rearrangement and expression of the alpha- and beta-chain genes of the T-cell antigen receptor in functional murine suppressor T-cell clones. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8638–8642. doi: 10.1073/pnas.82.24.8638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Santis R., Palmieri G., Doria G., Adorini L. T cell receptor-homologous mRNA from a suppressor T cell clone directs the synthesis of antigen-specific suppressive products. Eur J Immunol. 1987 Apr;17(4):575–578. doi: 10.1002/eji.1830170423. [DOI] [PubMed] [Google Scholar]
  8. Fairchild R. L., Kubo R. T., Moorhead J. W. Soluble factors in tolerance and contact sensitivity to 2,4-dinitro-fluorobenzene in mice. IX. A monoclonal T cell suppressor molecule is structurally and serologically related to the alpha/beta T cell receptor. J Immunol. 1988 Nov 15;141(10):3342–3348. [PubMed] [Google Scholar]
  9. Flood P. M., Lowy A., Tominaga A., Chue B., Greene M. I., Gershon R. K. Igh variable region-restricted T cell interactions. Genetic restriction of an antigen-specific suppressor inducer factor is imparted by an I-J+ antigen-nonspecific molecule. J Exp Med. 1983 Dec 1;158(6):1938–1947. doi: 10.1084/jem.158.6.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fotedar A., Boyer M., Smart W., Widtman J., Fraga E., Singh B. Fine specificity of antigen recognition by T cell hybridoma clones specific for poly-18: a synthetic polypeptide antigen of defined sequence and conformation. J Immunol. 1985 Nov;135(5):3028–3033. [PubMed] [Google Scholar]
  11. Green D. R., Chue B., Zheng H. G., Ferguson T. A., Beaman K. D., Flood P. M. A helper T cell clone produces an antigen-specific molecule (T-ABM) which functions in the induction of suppression. J Mol Cell Immunol. 1987;3(2):95–108. [PubMed] [Google Scholar]
  12. Harel-Bellan A., Ferris D. K., Vinocour M., Holt J. T., Farrar W. L. Specific inhibition of c-myc protein biosynthesis using an antisense synthetic deoxy-oligonucleotide in human T lymphocytes. J Immunol. 1988 Apr 1;140(7):2431–2435. [PubMed] [Google Scholar]
  13. Hedrick S. M., Germain R. N., Bevan M. J., Dorf M., Engel I., Fink P., Gascoigne N., Heber-Katz E., Kapp J., Kaufmann Y. Rearrangement and transcription of a T-cell receptor beta-chain gene in different T-cell subsets. Proc Natl Acad Sci U S A. 1985 Jan;82(2):531–535. doi: 10.1073/pnas.82.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heikkila R., Schwab G., Wickstrom E., Loke S. L., Pluznik D. H., Watt R., Neckers L. M. A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G0 to G1. 1987 Jul 30-Aug 5Nature. 328(6129):445–449. doi: 10.1038/328445a0. [DOI] [PubMed] [Google Scholar]
  15. Holt J. T., Redner R. L., Nienhuis A. W. An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation. Mol Cell Biol. 1988 Feb;8(2):963–973. doi: 10.1128/mcb.8.2.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Imai K., Kanno M., Kimoto H., Shigemoto K., Yamamoto S., Taniguchi M. Sequence and expression of transcripts of the T-cell antigen receptor alpha-chain gene in a functional, antigen-specific suppressor-T-cell hybridoma. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8708–8712. doi: 10.1073/pnas.83.22.8708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jaskulski D., deRiel J. K., Mercer W. E., Calabretta B., Baserga R. Inhibition of cellular proliferation by antisense oligodeoxynucleotides to PCNA cyclin. Science. 1988 Jun 10;240(4858):1544–1546. doi: 10.1126/science.2897717. [DOI] [PubMed] [Google Scholar]
  18. Kronenberg M., Goverman J., Haars R., Malissen M., Kraig E., Phillips L., Delovitch T., Suciu-Foca N., Hood L. Rearrangement and transcription of the beta-chain genes of the T-cell antigen receptor in different types of murine lymphocytes. Nature. 1985 Feb 21;313(6004):647–653. doi: 10.1038/313647a0. [DOI] [PubMed] [Google Scholar]
  19. Kuchroo V. K., Steele J. K., Billings P. R., Selvaraj P., Dorf M. E. Expression of CD3-associated antigen-binding receptors on suppressor T cells. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9209–9213. doi: 10.1073/pnas.85.23.9209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saito T., Germain R. N. Predictable acquisition of a new MHC recognition specificity following expression of a transfected T-cell receptor beta-chain gene. Nature. 1987 Sep 17;329(6136):256–259. doi: 10.1038/329256a0. [DOI] [PubMed] [Google Scholar]
  21. Saito T., Taniguchi M. Chemical features of an antigen-specific suppressor T cell factor composed of two polypeptide chains. J Mol Cell Immunol. 1984;1(3):137–145. [PubMed] [Google Scholar]
  22. Saito T., Weiss A., Miller J., Norcross M. A., Germain R. N. Specific antigen-Ia activation of transfected human T cells expressing murine Ti alpha beta-human T3 receptor complexes. Nature. 1987 Jan 8;325(7000):125–130. doi: 10.1038/325125a0. [DOI] [PubMed] [Google Scholar]
  23. Weiner D. B., Liu J., Hanna N., Bluestone J. A., Coligan J. E., Williams W. V., Greene M. I. CD3-associated heterodimeric polypeptides on suppressor hybridomas define biologically active inhibitory cells. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6077–6081. doi: 10.1073/pnas.85.16.6077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Winoto A., Urban J. L., Lan N. C., Goverman J., Hood L., Hansburg D. Predominant use of a V alpha gene segment in mouse T-cell receptors for cytochrome c. Nature. 1986 Dec 18;324(6098):679–682. doi: 10.1038/324679a0. [DOI] [PubMed] [Google Scholar]
  25. Zheng H., Boyer M., Fotedar A., Singh B., Green D. R. An antigen-specific helper T cell hybridoma produces an antigen-specific suppressor inducer molecule with identical antigenic fine specificity. Implications for the antigen recognition and function of helper and suppressor inducer T cells. J Immunol. 1988 Mar 1;140(5):1351–1358. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES