Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 May;86(10):3808–3812. doi: 10.1073/pnas.86.10.3808

Modeling sickle cell vasoocclusion in the rat leg: quantification of trapped sickle cells and correlation with 31P metabolic and 1H magnetic resonance imaging changes.

M E Fabry 1, V Rajanayagam 1, E Fine 1, S Holland 1, J C Gore 1, R L Nagel 1, D K Kaul 1
PMCID: PMC287230  PMID: 2726752

Abstract

We have developed an animal model to elucidate the acute effects of perfusion abnormalities on muscle metabolism induced by different density-defined classes of erythrocytes isolated from sickle cell anemia patients. Technetium-99m (99mTc)-labeled, saline-washed normal (AA), homozygous sickle (SS), or high-density SS (SS4) erythrocytes were injected into the femoral artery of the rat and quantitative 99mTc imaging, 31P magnetic resonance spectroscopy by surface coil at 2 teslas, and 1H magnetic resonance imaging at 0.15 tesla were performed. Between 5 and 25 microliters of SS4 cells was trapped in the microcirculation of the thigh (or 1-6 x 10(7) cells per cubic centimeter of tissue). In contrast, fewer SS discocytes (SS2) or AA cells were trapped (an equivalent packed cell volume of less than 6.7 microliters and 0.3 microliters, respectively). After injection of SS4 cells an initial increase in inorganic phosphate was observed in the region of the thigh served by the femoral artery, intracellular pH decreased, and subsequently the proton relaxation time T1 reached a broad maximum at 18-28 hr. When T1 obtained at this time was plotted against the volume of cells trapped, an increase of T1 over the control value of 411 +/- 48 msec was found that was proportional to the number of cells trapped. We conclude that the densest SS cells are most effective at producing vasoocclusion. The extent of the change detected by 1H magnetic resonance imaging is dependent on the amount of cells trapped in the microcirculation and the magnitude of the initial increase of inorganic phosphate.

Full text

PDF
3808

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baez S., Kaul D. K., Nagel R. L. Microvascular determinants of blood flow behavior and HbSS erythrocyte plugging in microcirculation. Blood Cells. 1982;8(1):127–137. [PubMed] [Google Scholar]
  2. Barabino G. A., McIntire L. V., Eskin S. G., Sears D. A., Udden M. Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow. Blood. 1987 Jul;70(1):152–157. [PubMed] [Google Scholar]
  3. Bardy A., Douyé H., Gobin R., Beydon J., de Tovar G., Pannecière C., Hégésippe M. Technetium-99m labeling by means of stannous pyrophosphate: application to bleomycin and red blood cells. J Nucl Med. 1975 May;16(5):435–437. [PubMed] [Google Scholar]
  4. Billett H. H., Kim K., Fabry M. E., Nagel R. L. The percentage of dense red cells does not predict incidence of sickle cell painful crisis. Blood. 1986 Jul;68(1):301–303. [PubMed] [Google Scholar]
  5. Bottomley P. A., Foster T. H., Argersinger R. E., Pfeifer L. M. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys. 1984 Jul-Aug;11(4):425–448. doi: 10.1118/1.595535. [DOI] [PubMed] [Google Scholar]
  6. Challiss R. A., Hayes D. J., Petty R. F., Radda G. K. An investigation of arterial insufficiency in rat hindlimb. A combined 31P-n.m.r. and bloodflow study. Biochem J. 1986 Jun 1;236(2):461–467. doi: 10.1042/bj2360461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark M. R., Mohandas N., Caggiano V., Shohet S. B. Effects of abnormal cation transport on deformability of desiccytes. J Supramol Struct. 1978;8(4):521–532. doi: 10.1002/jss.400080414. [DOI] [PubMed] [Google Scholar]
  8. Clark M. R., Mohandas N., Shohet S. B. Deformability of oxygenated irreversibly sickled cells. J Clin Invest. 1980 Jan;65(1):189–196. doi: 10.1172/JCI109650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eaton W. A., Hofrichter J. Hemoglobin S gelation and sickle cell disease. Blood. 1987 Nov;70(5):1245–1266. [PubMed] [Google Scholar]
  10. Fabry M. E., Benjamin L., Lawrence C., Nagel R. L. An objective sign in painful crisis in sickle cell anemia: the concomitant reduction of high density red cells. Blood. 1984 Aug;64(2):559–563. [PubMed] [Google Scholar]
  11. Fabry M. E., Kaul D. K., Davis L., Gore J. C., Brown M., Nagel R. L. An animal model for sickle cell vaso-occlusion: a study using NMR and technetium imaging. Prog Clin Biol Res. 1987;240:297–304. [PubMed] [Google Scholar]
  12. Fabry M. E., Mears J. G., Patel P., Schaefer-Rego K., Carmichael L. D., Martinez G., Nagel R. L. Dense cells in sickle cell anemia: the effects of gene interaction. Blood. 1984 Nov;64(5):1042–1046. [PubMed] [Google Scholar]
  13. Fabry M. E., Nagel R. L. Heterogeneity of red cells in the sickler: a characteristic with practical clinical and pathophysiological implications. Blood Cells. 1982;8(1):9–15. [PubMed] [Google Scholar]
  14. Gadian D. G., Radda G. K. NMR studies of tissue metabolism. Annu Rev Biochem. 1981;50:69–83. doi: 10.1146/annurev.bi.50.070181.000441. [DOI] [PubMed] [Google Scholar]
  15. Hebbel R. P., Yamada O., Moldow C. F., Jacob H. S., White J. G., Eaton J. W. Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: possible mechanism for microvascular occlusion in sickle cell disease. J Clin Invest. 1980 Jan;65(1):154–160. doi: 10.1172/JCI109646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Herfkens R. J., Sievers R., Kaufman L., Sheldon P. E., Ortendahl D. A., Lipton M. J., Crooks L. E., Higgins C. B. Nuclear magnetic resonance imaging of the infarcted muscle: a rat model. Radiology. 1983 Jun;147(3):761–764. doi: 10.1148/radiology.147.3.6844611. [DOI] [PubMed] [Google Scholar]
  17. Kaul D. K., Fabry M. E., Nagel R. L. Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications. Proc Natl Acad Sci U S A. 1989 May;86(9):3356–3360. doi: 10.1073/pnas.86.9.3356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kaul D. K., Fabry M. E., Nagel R. L. Vaso-occlusion by sickle cells: evidence for selective trapping of dense red cells. Blood. 1986 Nov;68(5):1162–1166. [PubMed] [Google Scholar]
  19. Kaul D. K., Fabry M. E., Windisch P., Baez S., Nagel R. L. Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics. J Clin Invest. 1983 Jul;72(1):22–31. doi: 10.1172/JCI110960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kurantsin-Mills J., Jacobs H. M., Klug P. P., Lessin L. S. Flow dynamics of human sickle erythrocytes in the mesenteric microcirculation of the exchange-transfused rat. Microvasc Res. 1987 Sep;34(2):152–167. doi: 10.1016/0026-2862(87)90050-1. [DOI] [PubMed] [Google Scholar]
  21. Lipowsky H. H., Sheikh N. U., Katz D. M. Intravital microscopy of capillary hemodynamics in sickle cell disease. J Clin Invest. 1987 Jul;80(1):117–127. doi: 10.1172/JCI113036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mankad V. N., Williams J. P., Harpen M., Longenecker G., Brogdon B., Moore B. Magnetic resonance imaging, percentage of dense cells and serum prostanoids as tools for objective assessment of pain crisis: a preliminary report. Prog Clin Biol Res. 1987;240:337–350. [PubMed] [Google Scholar]
  23. Mohandas N., Evans E. Sickle erythrocyte adherence to vascular endothelium. Morphologic correlates and the requirement for divalent cations and collagen-binding plasma proteins. J Clin Invest. 1985 Oct;76(4):1605–1612. doi: 10.1172/JCI112144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagel R. L., Fabry M. E., Billett H. H., Kaul D. K. Sickle cell painful crises: a multifactorial event. Prog Clin Biol Res. 1987;240:361–380. [PubMed] [Google Scholar]
  25. Noguchi C. T., Torchia D. A., Schechter A. N. Intracellular polymerization of sickle hemoglobin. Effects of cell heterogeneity. J Clin Invest. 1983 Sep;72(3):846–852. doi: 10.1172/JCI111055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. O'Donnell M., Gore J. C., Adams W. J. Toward an automated analysis system for nuclear magnetic resonance imaging. I. Efficient pulse sequences for simultaneous T1-T2 imaging. Med Phys. 1986 Mar-Apr;13(2):182–190. doi: 10.1118/1.595943. [DOI] [PubMed] [Google Scholar]
  27. Rao V. M., Fishman M., Mitchell D. G., Steiner R. M., Ballas S. K., Axel L., Dalinka M. K., Gefter W., Kressel H. Y. Painful sickle cell crisis: bone marrow patterns observed with MR imaging. Radiology. 1986 Oct;161(1):211–215. doi: 10.1148/radiology.161.1.3763869. [DOI] [PubMed] [Google Scholar]
  28. Ratner A. V., Okada R. D., Newell J. B., Pohost G. M. The relationship between proton nuclear magnetic resonance relaxation parameters and myocardial perfusion with acute coronary arterial occlusion and reperfusion. Circulation. 1985 Apr;71(4):823–828. doi: 10.1161/01.cir.71.4.823. [DOI] [PubMed] [Google Scholar]
  29. Seakins M., Gibbs W. N., Milner P. F., Bertles J. F. Erythrocyte Hb-S concentration. An important factor in the low oxygen affinity of blood in sickle cell anemia. J Clin Invest. 1973 Feb;52(2):422–432. doi: 10.1172/JCI107199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Srivastava S. C., Chervu L. R. Radionuclide-labeled red blood cells: current status and future prospects. Semin Nucl Med. 1984 Apr;14(2):68–82. doi: 10.1016/s0001-2998(84)80022-7. [DOI] [PubMed] [Google Scholar]
  31. Vömel T., Hager K., Platt D. Clearance of heterologous, homologous and damaged homologous erythrocytes by the isolated perfused rat liver. Vet Immunol Immunopathol. 1988 Jun;18(4):361–368. doi: 10.1016/0165-2427(88)90162-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES