Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 May;86(10):3877–3881. doi: 10.1073/pnas.86.10.3877

Active transport of gamma-aminobutyric acid and glycine into synaptic vesicles.

P E Kish 1, C Fischer-Bovenkerk 1, T Ueda 1
PMCID: PMC287244  PMID: 2566998

Abstract

Although gamma-aminobutyric acid (GABA) and glycine are recognized as major amino acid inhibitory neurotransmitters in the central nervous system, their storage is poorly understood. In this study we have characterized vesicular GABA and glycine uptakes in the cerebrum and spinal cord, respectively. We present evidence that GABA and glycine are each taken up into isolated synaptic vesicles in an ATP-dependent manner and that the uptake is driven by an electrochemical proton gradient. Uptake for both amino acids exhibited kinetics with low affinity (Km in the millimolar range) similar to vesicular glutamate uptake. The ATP-dependent GABA uptake was not inhibited by the putative amino acid neurotransmitters glycine, taurine, glutamate, or aspartate or by GABA analogs, agonists, and antagonists. Similarly, ATP-dependent glycine uptake was hardly affected by GABA, taurine, glutamate, or aspartate or by glycine analogs or antagonists. The GABA uptake was not affected by chloride, which is in contrast to the uptake of the excitatory neurotransmitter glutamate, whereas the glycine uptake was slightly stimulated by low concentrations of chloride. Tissue distribution studies indicate that the vesicular uptake systems for GABA, glycine, and glutamate are distributed in different proportions in the cerebrum and spinal cord. These results suggest that the vesicular uptake systems for GABA, glycine, and glutamate are distinct from each other.

Full text

PDF
3877

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. C., King S. C., Parsons S. M. Proton gradient linkage to active uptake of [3H]acetylcholine by Torpedo electric organ synaptic vesicles. Biochemistry. 1982 Jun 22;21(13):3037–3043. doi: 10.1021/bi00256a001. [DOI] [PubMed] [Google Scholar]
  2. Aprison M. H., McBride W. J. Evidence for the net accumulation of glycine into a synaptosomal fraction isolated from the telencephalon and spinal cord of the rat. Life Sci I. 1973 May 15;12(10):449–458. doi: 10.1016/0024-3205(73)90214-2. [DOI] [PubMed] [Google Scholar]
  3. Aragón M. C., Giménez C., Mayor F. Stoichiometry of sodium- and chloride-coupled glycine transport in synaptic plasma membrane vesicles derived from rat brain. FEBS Lett. 1987 Feb 9;212(1):87–90. doi: 10.1016/0014-5793(87)81562-4. [DOI] [PubMed] [Google Scholar]
  4. Arregui A., Logan W. J., Bennett J. P., Snyder S. H. Specific glycine--accumulating synaptosomes in the spinal cord of rats. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3485–3489. doi: 10.1073/pnas.69.11.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford H. F., Bennett G. W., Thomas A. J. Depolarizing stimuli and the release of physiologically active amino acids from suspensions of mammalian synaptosomes. J Neurochem. 1973 Sep;21(3):495–505. doi: 10.1111/j.1471-4159.1973.tb05995.x. [DOI] [PubMed] [Google Scholar]
  6. Dale N., Ottersen O. P., Roberts A., Storm-Mathisen J. Inhibitory neurones of a motor pattern generator in Xenopus revealed by antibodies to glycine. Nature. 1986 Nov 20;324(6094):255–257. doi: 10.1038/324255a0. [DOI] [PubMed] [Google Scholar]
  7. De Belleroche J. S., Bradford H. F. On the site of origin of transmitter amino acids released by depolarization of nerve terminals in vitro. J Neurochem. 1977 Aug;29(2):335–343. doi: 10.1111/j.1471-4159.1977.tb09627.x. [DOI] [PubMed] [Google Scholar]
  8. Early S. L., Michaelis E. K., Mertes M. P. Pharmacological specificity of synaptosomal and synaptic membrane gamma-aminobutyric acid (GABA) transport processes. Biochem Pharmacol. 1981 May 15;30(10):1105–1113. doi: 10.1016/0006-2952(81)90449-4. [DOI] [PubMed] [Google Scholar]
  9. Fischer-Bovenkerk C., Kish P. E., Ueda T. ATP-dependent glutamate uptake into synaptic vesicles from cerebellar mutant mice. J Neurochem. 1988 Oct;51(4):1054–1059. doi: 10.1111/j.1471-4159.1988.tb03068.x. [DOI] [PubMed] [Google Scholar]
  10. Fykse E. M., Christensen H., Fonnum F. Comparison of the properties of gamma-aminobutyric acid and L-glutamate uptake into synaptic vesicles isolated from rat brain. J Neurochem. 1989 Mar;52(3):946–951. doi: 10.1111/j.1471-4159.1989.tb02546.x. [DOI] [PubMed] [Google Scholar]
  11. Fykse E. M., Fonnum F. Uptake of gamma-aminobutyric acid by a synaptic vesicle fraction isolated from rat brain. J Neurochem. 1988 Apr;50(4):1237–1242. doi: 10.1111/j.1471-4159.1988.tb10599.x. [DOI] [PubMed] [Google Scholar]
  12. Haycock J. W., Levy W. B., Denner L. A., Cotman C. W. Effects of elevated [K+]O on the release of neurotransmitters from cortical synaptosomes: efflux or secretion? J Neurochem. 1978 May;30(5):1113–1125. doi: 10.1111/j.1471-4159.1978.tb12406.x. [DOI] [PubMed] [Google Scholar]
  13. Hell J. W., Maycox P. R., Stadler H., Jahn R. Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J. 1988 Oct;7(10):3023–3029. doi: 10.1002/j.1460-2075.1988.tb03166.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holz R. W. Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5190–5194. doi: 10.1073/pnas.75.10.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson R. G., Pfister D., Carty S. E., Scarpa A. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients. J Biol Chem. 1979 Nov 10;254(21):10963–10972. [PubMed] [Google Scholar]
  16. Kanner B. I. Active transport of gamma-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry. 1978 Apr 4;17(7):1207–1211. doi: 10.1021/bi00600a011. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Logan W. J., Snyder S. H. High affinity uptake systems for glycine, glutamic and aspaspartic acids in synaptosomes of rat central nervous tissues. Brain Res. 1972 Jul 20;42(2):413–431. doi: 10.1016/0006-8993(72)90540-9. [DOI] [PubMed] [Google Scholar]
  19. Martin D. L. Kinetics of the sodium-dependent transport of gamma-aminobutyric acid by synaptosomes. J Neurochem. 1973 Aug;21(2):345–356. doi: 10.1111/j.1471-4159.1973.tb04255.x. [DOI] [PubMed] [Google Scholar]
  20. Medzihradsky F., Nandhasri P. S., Idoyaga-Vargas V., Sellinger O. Z. A comparison of ATPase activity of the glial cell fraction and the neuronal perikaryal fraction isolated in bulk from rat cerebbral cortex. J Neurochem. 1971 Aug;18(8):1599–1603. doi: 10.1111/j.1471-4159.1971.tb00023.x. [DOI] [PubMed] [Google Scholar]
  21. Naito S., Ueda T. Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles. J Biol Chem. 1983 Jan 25;258(2):696–699. [PubMed] [Google Scholar]
  22. Naito S., Ueda T. Characterization of glutamate uptake into synaptic vesicles. J Neurochem. 1985 Jan;44(1):99–109. doi: 10.1111/j.1471-4159.1985.tb07118.x. [DOI] [PubMed] [Google Scholar]
  23. Njus D., Knoth J., Cook C., Kelly P. M. Electron transfer across the chromaffin granule membrane. J Biol Chem. 1983 Jan 10;258(1):27–30. [PubMed] [Google Scholar]
  24. Omura T., Takesue S. A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes. J Biochem. 1970 Feb;67(2):249–257. doi: 10.1093/oxfordjournals.jbchem.a129248. [DOI] [PubMed] [Google Scholar]
  25. Philippu A., Matthaei H. Uptake of serotonin, gamma-aminobutyric acid and histamine into synaptic vesicles of the pig caudate nucleus. Naunyn Schmiedebergs Arch Pharmacol. 1975;287(2):191–204. doi: 10.1007/BF00510450. [DOI] [PubMed] [Google Scholar]
  26. Roberts P. J., Mitchell J. F. The release of amino acids from the hemisected spinal cord during stimulation. J Neurochem. 1972 Nov;19(11):2473–2481. doi: 10.1111/j.1471-4159.1972.tb01307.x. [DOI] [PubMed] [Google Scholar]
  27. Roskoski R., Jr Comparison of DABA and GABA transport into plasma membrane vesicles derived from synaptosomes. J Neurochem. 1981 Feb;36(2):544–550. doi: 10.1111/j.1471-4159.1981.tb01626.x. [DOI] [PubMed] [Google Scholar]
  28. Sihra T. S., Nicholls D. G. 4-Aminobutyrate can be released exocytotically from guinea-pig cerebral cortical synaptosomes. J Neurochem. 1987 Jul;49(1):261–267. doi: 10.1111/j.1471-4159.1987.tb03424.x. [DOI] [PubMed] [Google Scholar]
  29. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Storm-Mathisen J., Leknes A. K., Bore A. T., Vaaland J. L., Edminson P., Haug F. M., Ottersen O. P. First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature. 1983 Feb 10;301(5900):517–520. doi: 10.1038/301517a0. [DOI] [PubMed] [Google Scholar]
  31. Toll L., Howard B. D. Evidence that an ATPase and a protonmotive force function in the transport of acetylcholine into storage vesicles. J Biol Chem. 1980 Mar 10;255(5):1787–1789. [PubMed] [Google Scholar]
  32. Young A. B., Snyder S. H. Strychnine binding associated with glycine receptors of the central nervous system. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2832–2836. doi: 10.1073/pnas.70.10.2832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zukin S. R., Young A. B., Snyder S. H. Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4802–4807. doi: 10.1073/pnas.71.12.4802. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES