Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 May;86(10):3887–3890. doi: 10.1073/pnas.86.10.3887

Parvalbumin increases in the caudate putamen of rats with vitamin D hypervitaminosis.

P A de Viragh 1, K G Haglid 1, M R Celio 1
PMCID: PMC287246  PMID: 2542952

Abstract

The influence of chronic vitamin D3 application on the concentration of the four calcium-binding proteins parvalbumin, the 28-kDa calbindin-D, calmodulin, and S-100 was studied in various brain regions and in the kidney. Young rats were administered daily 20,000 international units of vitamin D3 per kg (body weight) over a period of 4 months. This chronic treatment resulted in a clinically mild hypervitaminosis that did not affect the content of calmodulin, the 28-kDa calbindin-D, and S-100. Also the concentration of parvalbumin in the cerebral cortex, hippocampus, and kidney remained unchanged. On the other hand, parvalbumin was increased about 50% in the caudate putamen of hypervitaminotic animals as compared to controls. Our results indicate that the metabolism of parvalbumin in the caudate putamen can be influenced by variations of the blood level of this steroid hormone.

Full text

PDF
3887

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer J. Tests for emotionality in rats and mice: a review. Anim Behav. 1973 May;21(2):205–235. doi: 10.1016/s0003-3472(73)80065-x. [DOI] [PubMed] [Google Scholar]
  2. Baimbridge K. G., Mody I., Miller J. J. Reduction of rat hippocampal calcium-binding protein following commissural, amygdala, septal, perforant path, and olfactory bulb kindling. Epilepsia. 1985 Sep-Oct;26(5):460–465. doi: 10.1111/j.1528-1157.1985.tb05681.x. [DOI] [PubMed] [Google Scholar]
  3. Celio M. R., Baier W., Schärer L., de Viragh P. A., Gerday C. Monoclonal antibodies directed against the calcium binding protein parvalbumin. Cell Calcium. 1988 Apr;9(2):81–86. doi: 10.1016/0143-4160(88)90027-9. [DOI] [PubMed] [Google Scholar]
  4. Christakos S., Friedlander E. J., Frandsen B. R., Norman A. W. Studies on the mode of action of calciferol. XIII. Development of a radioimmunoassay for vitamin D-dependent chick intestinal calcium-binding protein and tissue distribution. Endocrinology. 1979 May;104(5):1495–1503. doi: 10.1210/endo-104-5-1495. [DOI] [PubMed] [Google Scholar]
  5. Gascon-Barré M., Huet P. M. Apparent [3H]1,25-dihydroxyvitamin D3 uptake by canine and rodent brain. Am J Physiol. 1983 Mar;244(3):E266–E271. doi: 10.1152/ajpendo.1983.244.3.E266. [DOI] [PubMed] [Google Scholar]
  6. Gerfen C. R., Baimbridge K. G., Miller J. J. The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8780–8784. doi: 10.1073/pnas.82.24.8780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harris R. A., Carnes D. L., Forte L. R. Reduction of brain calcium after consumption of diets deficient in calcium or vitamin D. J Neurochem. 1981 Feb;36(2):460–466. doi: 10.1111/j.1471-4159.1981.tb01615.x. [DOI] [PubMed] [Google Scholar]
  8. Heizmann C. W., Berchtold M. W. Expression of parvalbumin and other Ca2+-binding proteins in normal and tumor cells: a topical review. Cell Calcium. 1987 Feb;8(1):1–41. doi: 10.1016/0143-4160(87)90034-0. [DOI] [PubMed] [Google Scholar]
  9. Heizmann C. W., Celio M. R. Immunolocalization of parvalbumin. Methods Enzymol. 1987;139:552–570. doi: 10.1016/0076-6879(87)39112-8. [DOI] [PubMed] [Google Scholar]
  10. Henke H., Tobler P. H., Fischer J. A. Localization of salmon calcitonin binding sites in rat brain by autoradiography. Brain Res. 1983 Aug 8;272(2):373–377. doi: 10.1016/0006-8993(83)90587-5. [DOI] [PubMed] [Google Scholar]
  11. Lee Y. S., Taylor A. N., Reimers T. J., Edelstein S., Fullmer C. S., Wasserman R. H. Calbindin-D in peripheral nerve cells is vitamin D and calcium dependent. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7344–7348. doi: 10.1073/pnas.84.20.7344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. NORMAN A. W., DELUCA H. F. THE PREPARATION OF H3-VITAMINS D2 AND D3--THEIR LOCALIZATION IN THE RAT. Biochemistry. 1963 Sep-Oct;2:1160–1168. doi: 10.1021/bi00905a044. [DOI] [PubMed] [Google Scholar]
  13. Pardridge W. M., Sakiyama R., Coty W. A. Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier. J Neurochem. 1985 Apr;44(4):1138–1141. doi: 10.1111/j.1471-4159.1985.tb08735.x. [DOI] [PubMed] [Google Scholar]
  14. Schneeberger P. R., Heizmann C. W. Parvalbumin in rat kidney. Purification and localization. FEBS Lett. 1986 May 26;201(1):51–56. doi: 10.1016/0014-5793(86)80569-5. [DOI] [PubMed] [Google Scholar]
  15. Schneeberger P. R., Norman A. W., Heizmann C. W. Parvalbumin and vitamin D-dependent calcium-binding protein (Mr 28,000): comparison of their localization in the cerebellum of normal and rachitic rats. Neurosci Lett. 1985 Aug 16;59(1):97–103. doi: 10.1016/0304-3940(85)90221-6. [DOI] [PubMed] [Google Scholar]
  16. Sonnenberg J., Luine V. N., Krey L. C., Christakos S. 1,25-Dihydroxyvitamin D3 treatment results in increased choline acetyltransferase activity in specific brain nuclei. Endocrinology. 1986 Apr;118(4):1433–1439. doi: 10.1210/endo-118-4-1433. [DOI] [PubMed] [Google Scholar]
  17. Sonnenberg J., Pansini A. R., Christakos S. Vitamin D-dependent rat renal calcium-binding protein: development of a radioimmunoassay, tissue distribution, and immunologic identification. Endocrinology. 1984 Aug;115(2):640–648. doi: 10.1210/endo-115-2-640. [DOI] [PubMed] [Google Scholar]
  18. Stavrou D., Lübbe I., Haglid K. G. Immunelektrophoretische Quantifizierung des hirnspezifischen S-100 Proteins. Acta Neuropathol. 1974;29(3):275–280. doi: 10.1007/BF00685263. [DOI] [PubMed] [Google Scholar]
  19. Stumpf W. E., O'Brien L. P. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry. 1987;87(5):393–406. doi: 10.1007/BF00496810. [DOI] [PubMed] [Google Scholar]
  20. Stumpf W. E., Sar M., Clark S. A., DeLuca H. F. Brain target sites for 1,25-dihydroxyvitamin D3. Science. 1982 Mar 12;215(4538):1403–1405. doi: 10.1126/science.6977846. [DOI] [PubMed] [Google Scholar]
  21. Stumpf W. E., Sar M., Reid F. A., Tanaka Y., DeLuca H. F. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science. 1979 Dec 7;206(4423):1188–1190. doi: 10.1126/science.505004. [DOI] [PubMed] [Google Scholar]
  22. Taylor A. N. Chick brain calcium binding protein: response to cholecalciferol and some developmental aspects. J Nutr. 1977 Mar;107(3):480–486. doi: 10.1093/jn/107.3.480. [DOI] [PubMed] [Google Scholar]
  23. Varghese S., Lee S., Huang Y. C., Christakos S. Analysis of rat vitamin D-dependent calbindin-D28k gene expression. J Biol Chem. 1988 Jul 15;263(20):9776–9784. [PubMed] [Google Scholar]
  24. Wasserman R. H., Taylor A. N. Vitamin d3-induced calcium-binding protein in chick intestinal mucosa. Science. 1966 May 6;152(3723):791–793. doi: 10.1126/science.152.3723.791. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES