Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Jun;86(12):4470–4473. doi: 10.1073/pnas.86.12.4470

Metabolism of ethanol and carcinogens by glutathione transferases.

P S Bora 1, C A Spilburg 1, L G Lange 1
PMCID: PMC287291  PMID: 2734299

Abstract

Nonoxidative alcohol metabolism to form fatty acid ethyl esters contributes to alcohol-related end-organ damage, and these products are formed by two synthase enzymes. We recently purified the major (pI 4.9) synthase from human myocardium. The N-terminal sequence (A P Y T V V Y F P V R G R X K A L R M L X A D) is greater than 73% identical with that of a neutral (pI 6.7) detoxification enzyme, glutathione transferase P from rat hepatocellular carcinoma (P P Y T I V Y F P V R G R C E A T R M L L A D). Moreover, both the major human fatty acid ethyl ester synthase and bovine liver glutathione transferase catalyze the formation of fatty acid ethyl esters (Vmax 105 and 98 nmol per hr per mg, respectively). In addition, both enzymes catalyze the formation of glutathione-xenobiotic conjugates (Vmax 67 and 335 mol per hr per mol of enzyme, respectively). Physiological concentrations of glutathione increase the rate of formation of fatty acid ethyl esters up to 5-fold, and the glutathione transferase substrate 1-chloro-2,4-dinitrobenzene is a potent inhibitor of human myocardial fatty acid ethyl ester synthase. Thus, the identification of the major form of human myocardial fatty acid ethyl ester synthase as an acidic glutathione transferase links alcohol and xenobiotic metabolism and may relate the enhancement of tumorigenesis by alcohol abuse with carcinogen-conjugation reactions.

Full text

PDF
4470

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baars A. J., Jansen M., Breimer D. D. The influence of phenobarbital, 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin on glutathione S-transferase activity of rat liver cytosol. Biochem Pharmacol. 1978;27(21):2487–2497. doi: 10.1016/0006-2952(78)90314-3. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Caccuri A. M., Di Ilio C., Compagnone D., Barra D., Federici G. Acidic glutathione transferase from human heart. Characterization and N-terminal sequence determination. Biochem Med Metab Biol. 1988 Oct;40(2):123–132. doi: 10.1016/0885-4505(88)90113-2. [DOI] [PubMed] [Google Scholar]
  4. Capel I. D., Jenner M., Pinnock M. H., Williams D. C. The effect of chronic alcohol intake upon the hepatic microsomal carcinogen-activation system. Oncology. 1978;35(4):168–170. doi: 10.1159/000225278. [DOI] [PubMed] [Google Scholar]
  5. David R. M., Nerland D. E. Induction of mouse liver glutathione S-transferase by ethanol. Biochem Pharmacol. 1983 Sep 15;32(18):2809–2811. doi: 10.1016/0006-2952(83)90096-5. [DOI] [PubMed] [Google Scholar]
  6. Enstrom J. E. Colorectal cancer and beer drinking. Br J Cancer. 1977 May;35(5):674–683. doi: 10.1038/bjc.1977.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  8. Ishikawa T., Sies H. The isozyme pattern of glutathione S-transferases in rat heart. FEBS Lett. 1984 Apr 24;169(2):156–160. doi: 10.1016/0014-5793(84)80309-9. [DOI] [PubMed] [Google Scholar]
  9. Lange L. G., Bergmann S. R., Sobel B. E. Identification of fatty acid ethyl esters as products of rabbit myocardial ethanol metabolism. J Biol Chem. 1981 Dec 25;256(24):12968–12973. [PubMed] [Google Scholar]
  10. Lange L. G. Nonoxidative ethanol metabolism: formation of fatty acid ethyl esters by cholesterol esterase. Proc Natl Acad Sci U S A. 1982 Jul;79(13):3954–3957. doi: 10.1073/pnas.79.13.3954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lange L. G., Sobel B. E. Mitochondrial dysfunction induced by fatty acid ethyl esters, myocardial metabolites of ethanol. J Clin Invest. 1983 Aug;72(2):724–731. doi: 10.1172/JCI111022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laposata E. A., Lange L. G. Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science. 1986 Jan 31;231(4737):497–499. doi: 10.1126/science.3941913. [DOI] [PubMed] [Google Scholar]
  13. Lieber C. S., Seitz H. K., Garro A. J., Worner T. M. Alcohol-related diseases and carcinogenesis. Cancer Res. 1979 Jul;39(7 Pt 2):2863–2886. [PubMed] [Google Scholar]
  14. Mannervik B. The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol. 1985;57:357–417. doi: 10.1002/9780470123034.ch5. [DOI] [PubMed] [Google Scholar]
  15. McCoy G. D., Hecht S. S., Katayama S., Wynder E. L. Differential effect of chronic ethanol consumption on the carcinogenicity of N-nitrosopyrrolidine and N'-nitrosonornicotine in male Syrian golden hamsters. Cancer Res. 1981 Jul;41(7):2849–2854. [PubMed] [Google Scholar]
  16. Mogelson S., Lange L. G. Nonoxidative ethanol metabolism in rabbit myocardium: purification to homogeneity of fatty acyl ethyl ester synthase. Biochemistry. 1984 Aug 28;23(18):4075–4081. doi: 10.1021/bi00313a010. [DOI] [PubMed] [Google Scholar]
  17. Mogelson S., Pieper S. J., Kinnunen P. M., Lange L. G. Partial purification and product characterization of fatty acid ethyl ester synthases in rabbit myocardium. Biochim Biophys Acta. 1984 Mar 22;798(1):144–148. doi: 10.1016/0304-4165(84)90023-0. [DOI] [PubMed] [Google Scholar]
  18. Mogelson S., Pieper S. J., Lange L. G. Thermodynamic bases for fatty acid ethyl ester synthase catalyzed esterification of free fatty acid with ethanol and accumulation of fatty acid ethyl esters. Biochemistry. 1984 Aug 28;23(18):4082–4087. doi: 10.1021/bi00313a011. [DOI] [PubMed] [Google Scholar]
  19. Morton S., Mitchell M. C. Effects of chronic ethanol feeding on glutathione turnover in the rat. Biochem Pharmacol. 1985 May 1;34(9):1559–1563. doi: 10.1016/0006-2952(85)90699-9. [DOI] [PubMed] [Google Scholar]
  20. Muñoz M. E., Martin M. I., Fermoso J., Gonzalez J., Esteller A. Effect of chronic ethanol feeding on glutathione and glutathione-related enzyme activities in rat liver. Drug Alcohol Depend. 1987 Nov 30;20(3):221–226. doi: 10.1016/0376-8716(87)90031-7. [DOI] [PubMed] [Google Scholar]
  21. Reyes H., Levi A. J., Gatmaitan Z., Arias I. M. Studies of Y and Z, two hepatic cytoplasmic organic anion-binding proteins: effect of drugs, chemicals, hormones, and cholestasis. J Clin Invest. 1971 Nov;50(11):2242–2252. doi: 10.1172/JCI106721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Satoh K., Kitahara A., Soma Y., Inaba Y., Hatayama I., Sato K. Purification, induction, and distribution of placental glutathione transferase: a new marker enzyme for preneoplastic cells in the rat chemical hepatocarcinogenesis. Proc Natl Acad Sci U S A. 1985 Jun;82(12):3964–3968. doi: 10.1073/pnas.82.12.3964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suguoka Y., Kano T., Okuda A., Sakai M., Kitagawa T., Muramatsu M. Cloning and the nucleotide sequence of rat glutathione S-transferase P cDNA. Nucleic Acids Res. 1985 Sep 11;13(17):6049–6057. doi: 10.1093/nar/13.17.6049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tomarev S. I., Zinovieva R. D. Squid major lens polypeptides are homologous to glutathione S-transferases subunits. Nature. 1988 Nov 3;336(6194):86–88. doi: 10.1038/336086a0. [DOI] [PubMed] [Google Scholar]
  25. Wistow G., Piatigorsky J. Recruitment of enzymes as lens structural proteins. Science. 1987 Jun 19;236(4808):1554–1556. doi: 10.1126/science.3589669. [DOI] [PubMed] [Google Scholar]
  26. Wright M., Bieser K. J., Kinnunen P. M., Lange L. G. Nonoxidative ethanol metabolism in human leukocytes: detection of fatty acid ethyl ester synthase activity. Biochem Biophys Res Commun. 1987 Feb 13;142(3):979–985. doi: 10.1016/0006-291x(87)91510-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES