Abstract
Based on recent reports of antibody-dependent enhancement of human immunodeficiency virus type 1 (HIV-1) infection in vitro by serum from HIV-1-infected humans, sera from HIV-1 antibody-positive chimpanzees (Pan troglodytes) was evaluated for enhancing activity in an in vitro infection assay that uses MT-2 cells (a human lymphoblastoid cell line). Although fresh chimpanzee serum was found to have pronounced infection-enhancing properties in the absence of antibody to HIV-1, this effect was abolished by heat inactivation (57 degrees C, 1 hr) or treatment with cobra venom anticomplementary protein. Heat-inactivated, HIV-1 antibody-positive chimpanzee serum could enhance HIV-1 infection of MT-2 cells in vitro when combined with fresh, normal human serum. By serial serum samples from three HIV-1-infected chimpanzees, HIV-1 antibody-positive chimpanzees are shown to develop enhancing antibodies early in infection (2 mo postchallenge), whereas neutralizing antibodies develop later. Over the course of HIV-1 infection, this enhancing activity decreases while neutralizing activity increases, suggesting a possible role for enhancing and neutralizing activities in HIV-1 pathogenesis. The enhancing activity of an IgG fraction used to passively immunize chimpanzees against HIV-1 infection is shown to be present at dilutions as high as 1:65,000, offering an interesting possible reason for the failure of passive immunization to protect chimpanzees from HIV infection. These results suggest that serum from HIV-1-immunized chimpanzees might be tested to determine whether current HIV-1 candidate vaccines induce production of antibodies that mediate antibody-dependent enhancement of HIV-1 infection in this in vitro assay.
Full text
PDF![4710](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aec/287341/451ee27a0774/pnas00252-0385.png)
![4711](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aec/287341/7d1682373ee1/pnas00252-0386.png)
![4712](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aec/287341/8470107ed64b/pnas00252-0387.png)
![4713](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aec/287341/b5576766100f/pnas00252-0388.png)
![4714](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aec/287341/50a6916a016c/pnas00252-0389.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alter H. J., Eichberg J. W., Masur H., Saxinger W. C., Gallo R., Macher A. M., Lane H. C., Fauci A. S. Transmission of HTLV-III infection from human plasma to chimpanzees: an animal model for AIDS. Science. 1984 Nov 2;226(4674):549–552. doi: 10.1126/science.6093251. [DOI] [PubMed] [Google Scholar]
- Antibody-dependent enhancement of HIV infection. Lancet. 1988 Jun 4;1(8597):1285–1286. [PubMed] [Google Scholar]
- Antibody-dependent enhancement of HIV infection. Lancet. 1988 Jun 4;1(8597):1285–1286. [PubMed] [Google Scholar]
- Bartholomew R. M., Esser A. F., Müller-Eberhard H. J. Lysis of oncornaviruses by human serum. Isolation of the viral complement (C1) receptor and identification as p15E. J Exp Med. 1978 Mar 1;147(3):844–853. doi: 10.1084/jem.147.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berman P. W., Groopman J. E., Gregory T., Clapham P. R., Weiss R. A., Ferriani R., Riddle L., Shimasaki C., Lucas C., Lasky L. A. Human immunodeficiency virus type 1 challenge of chimpanzees immunized with recombinant envelope glycoprotein gp120. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5200–5204. doi: 10.1073/pnas.85.14.5200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cardosa M. J., Porterfield J. S., Gordon S. Complement receptor mediates enhanced flavivirus replication in macrophages. J Exp Med. 1983 Jul 1;158(1):258–263. doi: 10.1084/jem.158.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cecilia D., Gadkari D. A., Kedarnath N., Ghosh S. N. Epitope mapping of Japanese encephalitis virus envelope protein using monoclonal antibodies against an Indian strain. J Gen Virol. 1988 Nov;69(Pt 11):2741–2747. doi: 10.1099/0022-1317-69-11-2741. [DOI] [PubMed] [Google Scholar]
- Halstead S. B. Pathogenesis of dengue: challenges to molecular biology. Science. 1988 Jan 29;239(4839):476–481. doi: 10.1126/science.3277268. [DOI] [PubMed] [Google Scholar]
- Hu S. L., Fultz P. N., McClure H. M., Eichberg J. W., Thomas E. K., Zarling J., Singhal M. C., Kosowski S. G., Swenson R. B., Anderson D. C. Effect of immunization with a vaccinia-HIV env recombinant on HIV infection of chimpanzees. Nature. 1987 Aug 20;328(6132):721–723. doi: 10.1038/328721a0. [DOI] [PubMed] [Google Scholar]
- Montefiori D. C., Mitchell W. M. Infection of the HTLV-II-bearing T-cell line C3 with HTLV-III/LAV is highly permissive and lytic. Virology. 1986 Dec;155(2):726–731. doi: 10.1016/0042-6822(86)90233-3. [DOI] [PubMed] [Google Scholar]
- Montefiori D. C., Robinson W. E., Jr, Schuffman S. S., Mitchell W. M. Evaluation of antiviral drugs and neutralizing antibodies to human immunodeficiency virus by a rapid and sensitive microtiter infection assay. J Clin Microbiol. 1988 Feb;26(2):231–235. doi: 10.1128/jcm.26.2.231-235.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nara P. L., Robey W. G., Gonda M. A., Carter S. G., Fischinger P. J. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3797–3801. doi: 10.1073/pnas.84.11.3797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peiris J. S., Porterfield J. S. Antibody-dependent plaque enhancement: its antigenic specificity in relation to Togaviridae. J Gen Virol. 1982 Feb;58(Pt 2):291–296. doi: 10.1099/0022-1317-58-2-291. [DOI] [PubMed] [Google Scholar]
- Poiesz B. J., Ruscetti F. W., Gazdar A. F., Bunn P. A., Minna J. D., Gallo R. C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7415–7419. doi: 10.1073/pnas.77.12.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porterfield J. S. Antibody-dependent enhancement of viral infectivity. Adv Virus Res. 1986;31:335–355. doi: 10.1016/s0065-3527(08)60268-7. [DOI] [PubMed] [Google Scholar]
- Prince A. M., Horowitz B., Baker L., Shulman R. W., Ralph H., Valinsky J., Cundell A., Brotman B., Boehle W., Rey F. Failure of a human immunodeficiency virus (HIV) immune globulin to protect chimpanzees against experimental challenge with HIV. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6944–6948. doi: 10.1073/pnas.85.18.6944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson W. E., Jr, Montefiori D. C., Gillespie D. H., Mitchell W. M. Complement-mediated, antibody-dependent enhancement of HIV-1 infection in vitro is characterized by increased protein and RNA syntheses and infectious virus release. J Acquir Immune Defic Syndr. 1989;2(1):33–42. [PubMed] [Google Scholar]
- Robinson W. E., Jr, Montefiori D. C., Mitchell W. M. A human immunodeficiency virus type 1 (HIV-1) infection-enhancing factor in seropositive sera. Biochem Biophys Res Commun. 1987 Dec 16;149(2):693–699. doi: 10.1016/0006-291x(87)90423-2. [DOI] [PubMed] [Google Scholar]
- Robinson W. E., Jr, Montefiori D. C., Mitchell W. M. Antibody-dependent enhancement of human immunodeficiency virus type 1 infection. Lancet. 1988 Apr 9;1(8589):790–794. doi: 10.1016/s0140-6736(88)91657-1. [DOI] [PubMed] [Google Scholar]
- Robinson W. E., Jr, Montefiori D. C., Mitchell W. M. Will antibody-dependent enhancement of HIV-1 infection be a problem with AIDS vaccines? Lancet. 1988 Apr 9;1(8589):830–831. doi: 10.1016/s0140-6736(88)91695-9. [DOI] [PubMed] [Google Scholar]
- Takeda A., Tuazon C. U., Ennis F. A. Antibody-enhanced infection by HIV-1 via Fc receptor-mediated entry. Science. 1988 Oct 28;242(4878):580–583. doi: 10.1126/science.2972065. [DOI] [PubMed] [Google Scholar]
- Welsh R. M., Jr, Cooper N. R., Jensen F. C., Oldstone M. B. Human serum lyses RNA tumour viruses. Nature. 1975 Oct 16;257(5527):612–614. doi: 10.1038/257612a0. [DOI] [PubMed] [Google Scholar]