Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Jun;86(11):4297–4301. doi: 10.1073/pnas.86.11.4297

Synaptogenesis in visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction.

J P Bourgeois 1, P J Jastreboff 1, P Rakic 1
PMCID: PMC287439  PMID: 2726773

Abstract

We used quantitative electron microscopy to determine the effect of precocious visual experience on the time course, magnitude, and pattern of perinatal synaptic overproduction in the primary visual cortex of the rhesus monkey. Fetuses were delivered by caesarean section 3 weeks before term, exposed to normal light intensity and day/night cycles, and killed within the first postnatal month, together with age-matched controls that were delivered at term. We found that premature visual stimulation does not affect the rate of synaptic accretion and overproduction. Both of these processes proceed in relation to the time of conception rather than to the time of delivery. In contrast, the size, type, and laminar distribution of synapses were significantly different between preterm and control infants. The changes and differences in these parameters correlate with the duration of visual stimulation and become less pronounced with age. If visual experience in infancy influences the maturation of the visual cortex, it must do so predominantly by strengthening, modifying, and/or eliminating synapses that have already been formed, rather than by regulating the rate of synapse production.

Full text

PDF
4297

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anker R. L., Cragg B. G. Estimation of the number of synapses in a volume of nervous tissue from counts in thin sections by electron microscopy. J Neurocytol. 1974 Dec;3(6):725–735. doi: 10.1007/BF01097194. [DOI] [PubMed] [Google Scholar]
  2. Barlow H. B. Visual experience and cortical development. Nature. 1975 Nov 20;258(5532):199–204. doi: 10.1038/258199a0. [DOI] [PubMed] [Google Scholar]
  3. Bourgeois J. P., Toutant M., Gouzé J. L., Changeux J. P. Effect of activity on the selective stabilization of the motor innervation of fast muscle posterior latissimus dorsi from chick embryo. Int J Dev Neurosci. 1986;4(5):415–429. doi: 10.1016/0736-5748(86)90024-9. [DOI] [PubMed] [Google Scholar]
  4. Changeux J. P., Danchin A. Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature. 1976 Dec 23;264(5588):705–712. doi: 10.1038/264705a0. [DOI] [PubMed] [Google Scholar]
  5. Cooper M. L., Rakic P. Gradients of cellular maturation and synaptogenesis in the superior colliculus of the fetal rhesus monkey. J Comp Neurol. 1983 Apr 1;215(2):165–186. doi: 10.1002/cne.902150205. [DOI] [PubMed] [Google Scholar]
  6. Fantz R. L., Fagan J. F., 3rd Visual attention to size and number of pattern details by term and preterm infants during the first six months. Child Dev. 1975 Mar;46(1):3–18. [PubMed] [Google Scholar]
  7. Fifková E. Changes of axosomatic synapses in the visual cortex of monocularly deprived rats. J Neurobiol. 1970;2(1):61–71. doi: 10.1002/neu.480020106. [DOI] [PubMed] [Google Scholar]
  8. Frégnac Y., Imbert M. Development of neuronal selectivity in primary visual cortex of cat. Physiol Rev. 1984 Jan;64(1):325–434. doi: 10.1152/physrev.1984.64.1.325. [DOI] [PubMed] [Google Scholar]
  9. Galli L., Maffei L. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science. 1988 Oct 7;242(4875):90–91. doi: 10.1126/science.3175637. [DOI] [PubMed] [Google Scholar]
  10. Glass P., Avery G. B., Subramanian K. N., Keys M. P., Sostek A. M., Friendly D. S. Effect of bright light in the hospital nursery on the incidence of retinopathy of prematurity. N Engl J Med. 1985 Aug 15;313(7):401–404. doi: 10.1056/NEJM198508153130701. [DOI] [PubMed] [Google Scholar]
  11. Globus A., Scheibel A. B. The effect of visual deprivation on cortical neurons: a Golgi study. Exp Neurol. 1967 Nov;19(3):331–345. doi: 10.1016/0014-4886(67)90029-5. [DOI] [PubMed] [Google Scholar]
  12. HORSTEN G. P., WINKELMAN J. E. Development of the ERG in relation to histological differentiation of the retina in man and animals. Arch Ophthalmol. 1960 Feb;63:232–242. doi: 10.1001/archopht.1960.00950020234005. [DOI] [PubMed] [Google Scholar]
  13. Hubel D. H., Wiesel T. N., LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):377–409. doi: 10.1098/rstb.1977.0050. [DOI] [PubMed] [Google Scholar]
  14. Huttenlocher P. R., de Courten C. The development of synapses in striate cortex of man. Hum Neurobiol. 1987;6(1):1–9. [PubMed] [Google Scholar]
  15. Keefe J. R., Ordy J. M., Samorajski T. Prenatal development of the retina in a diurnal primate (Macaca mulatta). Anat Rec. 1966 Apr;154(4):759–783. doi: 10.1002/ar.1091540407. [DOI] [PubMed] [Google Scholar]
  16. Lund J. S. Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J Comp Neurol. 1973 Feb 15;147(4):455–496. doi: 10.1002/cne.901470404. [DOI] [PubMed] [Google Scholar]
  17. Nishimura Y., Rakic P. Development of the rhesus monkey retina. I. Emergence of the inner plexiform layer and its synapses. J Comp Neurol. 1985 Nov 22;241(4):420–434. doi: 10.1002/cne.902410403. [DOI] [PubMed] [Google Scholar]
  18. Parnavelas J. G., Globus A. The effect of continuous illumination on the development of cortical neurons in the rat: a Golgi study. Exp Neurol. 1976 Jun;51(3):637–647. doi: 10.1016/0014-4886(76)90186-2. [DOI] [PubMed] [Google Scholar]
  19. Purves D., Lichtman J. W. Elimination of synapses in the developing nervous system. Science. 1980 Oct 10;210(4466):153–157. doi: 10.1126/science.7414326. [DOI] [PubMed] [Google Scholar]
  20. Rakic P., Bourgeois J. P., Eckenhoff M. F., Zecevic N., Goldman-Rakic P. S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science. 1986 Apr 11;232(4747):232–235. doi: 10.1126/science.3952506. [DOI] [PubMed] [Google Scholar]
  21. Rakic P. Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: site and time of origin, kinetics of proliferation, routes of migration and pattern of distribution of neurons. J Comp Neurol. 1977 Nov 1;176(1):23–52. doi: 10.1002/cne.901760103. [DOI] [PubMed] [Google Scholar]
  22. Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972 May;145(1):61–83. doi: 10.1002/cne.901450105. [DOI] [PubMed] [Google Scholar]
  23. Rakic P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science. 1974 Feb 1;183(4123):425–427. doi: 10.1126/science.183.4123.425. [DOI] [PubMed] [Google Scholar]
  24. Rakic P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature. 1976 Jun 10;261(5560):467–471. doi: 10.1038/261467a0. [DOI] [PubMed] [Google Scholar]
  25. Rakic P., Riley K. P. Overproduction and elimination of retinal axons in the fetal rhesus monkey. Science. 1983 Mar 25;219(4591):1441–1444. doi: 10.1126/science.6828871. [DOI] [PubMed] [Google Scholar]
  26. Rakic P. Specification of cerebral cortical areas. Science. 1988 Jul 8;241(4862):170–176. doi: 10.1126/science.3291116. [DOI] [PubMed] [Google Scholar]
  27. Shatz C. J., Kirkwood P. A. Prenatal development of functional connections in the cat's retinogeniculate pathway. J Neurosci. 1984 May;4(5):1378–1397. doi: 10.1523/JNEUROSCI.04-05-01378.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shatz C. J., Stryker M. P. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science. 1988 Oct 7;242(4875):87–89. doi: 10.1126/science.3175636. [DOI] [PubMed] [Google Scholar]
  29. Sherman S. M., Spear P. D. Organization of visual pathways in normal and visually deprived cats. Physiol Rev. 1982 Apr;62(2):738–855. doi: 10.1152/physrev.1982.62.2.738. [DOI] [PubMed] [Google Scholar]
  30. Stent G. S. A physiological mechanism for Hebb's postulate of learning. Proc Natl Acad Sci U S A. 1973 Apr;70(4):997–1001. doi: 10.1073/pnas.70.4.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Swindale N. V. Absence of ocular dominance patches in dark-reared cats. Nature. 1981 Mar 26;290(5804):332–333. doi: 10.1038/290332a0. [DOI] [PubMed] [Google Scholar]
  32. Tieman S. B. Effects of monocular deprivation on geniculocortical synapses in the cat. J Comp Neurol. 1984 Jan 10;222(2):166–176. doi: 10.1002/cne.902220203. [DOI] [PubMed] [Google Scholar]
  33. Turner A. M., Greenough W. T. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. 1985 Mar 11;329(1-2):195–203. doi: 10.1016/0006-8993(85)90525-6. [DOI] [PubMed] [Google Scholar]
  34. Valverde F. Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res. 1967;3(4):337–352. doi: 10.1007/BF00237559. [DOI] [PubMed] [Google Scholar]
  35. Wiesel T. N., Hubel D. H. Ordered arrangement of orientation columns in monkeys lacking visual experience. J Comp Neurol. 1974 Dec 1;158(3):307–318. doi: 10.1002/cne.901580306. [DOI] [PubMed] [Google Scholar]
  36. Wiesel T. N. Postnatal development of the visual cortex and the influence of environment. Nature. 1982 Oct 14;299(5884):583–591. doi: 10.1038/299583a0. [DOI] [PubMed] [Google Scholar]
  37. Winfield D. A. The postnatal development of synapses in the different laminae of the visual cortex in the normal kitten and in kittens with eyelid suture. Brain Res. 1983 Aug;285(2):155–169. doi: 10.1016/0165-3806(83)90048-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES