Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Jun;86(11):4306–4310. doi: 10.1073/pnas.86.11.4306

Influence of steroids on the hypothalamic corticotropin-releasing factor and preproenkephalin mRNA responses to stress.

S L Lightman 1, W S Young 3rd 1
PMCID: PMC287441  PMID: 2786213

Abstract

We have used in situ hybridization histochemistry to investigate the influence of both circulating corticosteroids and the stress paradigm of i.p. hypertonic saline on the levels of mRNAs encoding corticotropin-releasing factor (CRF) and preproenkephalin in parvocellular neurons of the rat hypothalamus. Stress increased both CRF and preproenkephalin mRNAs, whereas adrenalectomy increased only CRF mRNA. After adrenalectomy, even when CRF mRNA had reached peak levels, stress still further increased CRF mRNA and caused an exaggerated rise in preproenkephalin mRNA. Dexamethasone administration in the fast or intermediate-feedback time domains had no effect on CRF or preproenkephalin mRNA responses to stress; however, when administered over a longer period of time in the slow-feedback time domain dexamethasone reduced basal CRF mRNA levels and the stress-stimulated levels of CRF and preproenkephalin mRNA. These results show that different stimuli to the parvocellular paraventricular hypothalamus differentially regulate CRF transcript levels. Furthermore, in spite of the lack of any detectable effect of changes in circulating glucocorticoid levels on basal levels of preproenkephalin mRNA, glucocorticoids markedly alter the preproenkephalin mRNA response to stress.

Full text

PDF
4306

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnati L. F., Fuxe K., Yu Z. Y., Härfstrand A., Okret S., Wikström A. C., Goldstein M., Zoli M., Vale W., Gustafsson J. A. Morphometrical analysis of the distribution of corticotrophin releasing factor, glucocorticoid receptor and phenylethanolamine-N-methyltransferase immunoreactive structures in the paraventricular hypothalamic nucleus of the rat. Neurosci Lett. 1985 Mar 15;54(2-3):147–152. doi: 10.1016/s0304-3940(85)80070-7. [DOI] [PubMed] [Google Scholar]
  2. Akerblom I. E., Slater E. P., Beato M., Baxter J. D., Mellon P. L. Negative regulation by glucocorticoids through interference with a cAMP responsive enhancer. Science. 1988 Jul 15;241(4863):350–353. doi: 10.1126/science.2838908. [DOI] [PubMed] [Google Scholar]
  3. Antoni F. A. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev. 1986 Nov;7(4):351–378. doi: 10.1210/edrv-7-4-351. [DOI] [PubMed] [Google Scholar]
  4. Buckingham J. C. The influence of corticosteroids on the secretion of corticotrophin and its hypothalamic releasing hormone. J Physiol. 1979 Jan;286:331–342. doi: 10.1113/jphysiol.1979.sp012622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chakrabarti L., Guyader M., Alizon M., Daniel M. D., Desrosiers R. C., Tiollais P., Sonigo P. Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature. 1987 Aug 6;328(6130):543–547. doi: 10.1038/328543a0. [DOI] [PubMed] [Google Scholar]
  6. Davis L. G., Arentzen R., Reid J. M., Manning R. W., Wolfson B., Lawrence K. L., Baldino F., Jr Glucocorticoid sensitivity of vasopressin mRNA levels in the paraventricular nucleus of the rat. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1145–1149. doi: 10.1073/pnas.83.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eckland D. J., Todd K., Jessop D. S., Biswas S., Lightman S. L. Differential effects of hypothalamic catecholamine depletion on the release of arginine vasopressin and CRF-41 into hypothalamo-hypophyseal portal blood. Neurosci Lett. 1988 Aug 1;90(3):292–296. doi: 10.1016/0304-3940(88)90204-2. [DOI] [PubMed] [Google Scholar]
  8. Eckland D. J., Todd K., Lightman S. L. Immunoreactive vasopressin and oxytocin in hypothalamo-hypophysial portal blood of the Brattleboro and Long-Evans rat: effect of adrenalectomy and dexamethasone. J Endocrinol. 1988 Apr;117(1):27–34. doi: 10.1677/joe.0.1170027. [DOI] [PubMed] [Google Scholar]
  9. Fink G., Robinson I. C., Tannahill L. A. Effects of adrenalectomy and glucocorticoids on the peptides CRF-41, AVP and oxytocin in rat hypophysial portal blood. J Physiol. 1988 Jul;401:329–345. doi: 10.1113/jphysiol.1988.sp017165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Finley J. C., Maderdrut J. L., Petrusz P. The immunocytochemical localization of enkephalin in the central nervous system of the rat. J Comp Neurol. 1981 Jun 1;198(4):541–565. doi: 10.1002/cne.901980402. [DOI] [PubMed] [Google Scholar]
  11. Fischer-Colbrie R., Iacangelo A., Eiden L. E. Neural and humoral factors separately regulate neuropeptide Y, enkephalin, and chromogranin A and B mRNA levels in rat adrenal medulla. Proc Natl Acad Sci U S A. 1988 May;85(9):3240–3244. doi: 10.1073/pnas.85.9.3240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fuxe K., Wikström A. C., Okret S., Agnati L. F., Härfstrand A., Yu Z. Y., Granholm L., Zoli M., Vale W., Gustafsson J. A. Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel- and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor. Endocrinology. 1985 Nov;117(5):1803–1812. doi: 10.1210/endo-117-5-1803. [DOI] [PubMed] [Google Scholar]
  13. Guillaume V., Conte-Devolx B., Szafarczyk A., Malaval F., Pares-Herbute N., Grino M., Alonso G., Assenmacher I., Oliver C. The corticotropin-releasing factor release in rat hypophysial portal blood is mediated by brain catecholamines. Neuroendocrinology. 1987 Aug;46(2):143–146. doi: 10.1159/000124811. [DOI] [PubMed] [Google Scholar]
  14. Hisano S., Daikoku S., Yanaihara N., Shibasaki T. Intragranular colocalization of CRF and Met-Enk-8 in nerve terminals in the rat median eminence. Brain Res. 1986 Apr 9;370(2):321–326. doi: 10.1016/0006-8993(86)90487-7. [DOI] [PubMed] [Google Scholar]
  15. Hisano S., Tsuruo Y., Katoh S., Daikoku S., Yanaihara N., Shibasaki T. Intragranular colocalization of arginine vasopressin and methionine-enkephalin-octapeptide in CRF-axons in the rat median eminence. Cell Tissue Res. 1987 Sep;249(3):497–507. doi: 10.1007/BF00217321. [DOI] [PubMed] [Google Scholar]
  16. Hämäläinen L., Oikarinen J., Kivirikko K. I. Synthesis and degradation of type I procollagen mRNAs in cultured human skin fibroblasts and the effect of cortisol. J Biol Chem. 1985 Jan 25;260(2):720–725. [PubMed] [Google Scholar]
  17. Hökfelt T., Fahrenkrug J., Tatemoto K., Mutt V., Werner S., Hulting A. L., Terenius L., Chang K. J. The PHI (PHI-27)/corticotropin-releasing factor/enkephalin immunoreactive hypothalamic neuron: possible morphological basis for integrated control of prolactin, corticotropin, and growth hormone secretion. Proc Natl Acad Sci U S A. 1983 Feb;80(3):895–898. doi: 10.1073/pnas.80.3.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jingami H., Matsukura S., Numa S., Imura H. Effects of adrenalectomy and dexamethasone administration on the level of prepro-corticotropin-releasing factor messenger ribonucleic acid (mRNA) in the hypothalamus and adrenocorticotropin/beta-lipotropin precursor mRNA in the pituitary in rats. Endocrinology. 1985 Oct;117(4):1314–1320. doi: 10.1210/endo-117-4-1314. [DOI] [PubMed] [Google Scholar]
  19. Jones M. T., Gillham B. Factors involved in the regulation of adrenocorticotropic hormone/beta-lipotropic hormone. Physiol Rev. 1988 Jul;68(3):743–818. doi: 10.1152/physrev.1988.68.3.743. [DOI] [PubMed] [Google Scholar]
  20. Kasai M., Kannan H., Ueta Y., Osaka T., Inenaga K., Yamashita H. Effects of iontophoretically applied cortisol on tuberoinfundibular neurons in hypothalamic paraventricular nucleus of anesthetized rats. Neurosci Lett. 1988 Apr 22;87(1-2):35–40. doi: 10.1016/0304-3940(88)90141-3. [DOI] [PubMed] [Google Scholar]
  21. Kasai M., Yamashita H. Cortisol suppresses noradrenaline-induced excitatory responses of neurons in the paraventricular nucleus; an in vitro study. Neurosci Lett. 1988 Aug 15;91(1):65–70. doi: 10.1016/0304-3940(88)90250-9. [DOI] [PubMed] [Google Scholar]
  22. Kasai M., Yamashita H. Inhibition by cortisol of neurons in the paraventricular nucleus of the hypothalamus in adrenalectomized rats; an in vitro study. Neurosci Lett. 1988 Aug 15;91(1):59–64. doi: 10.1016/0304-3940(88)90249-2. [DOI] [PubMed] [Google Scholar]
  23. Keller-Wood M. E., Dallman M. F. Corticosteroid inhibition of ACTH secretion. Endocr Rev. 1984 Winter;5(1):1–24. doi: 10.1210/edrv-5-1-1. [DOI] [PubMed] [Google Scholar]
  24. Kiss J. Z., Mezey E., Skirboll L. Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1854–1858. doi: 10.1073/pnas.81.6.1854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kovács K. J., Mezey E. Dexamethasone inhibits corticotropin-releasing factor gene expression in the rat paraventricular nucleus. Neuroendocrinology. 1987 Oct;46(4):365–368. doi: 10.1159/000124846. [DOI] [PubMed] [Google Scholar]
  26. Lee S. W., Tsou A. P., Chan H., Thomas J., Petrie K., Eugui E. M., Allison A. C. Glucocorticoids selectively inhibit the transcription of the interleukin 1 beta gene and decrease the stability of interleukin 1 beta mRNA. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1204–1208. doi: 10.1073/pnas.85.4.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Levin N., Shinsako J., Dallman M. F. Corticosterone acts on the brain to inhibit adrenalectomy-induced adrenocorticotropin secretion. Endocrinology. 1988 Feb;122(2):694–701. doi: 10.1210/endo-122-2-694. [DOI] [PubMed] [Google Scholar]
  28. Lightman S. L., Young W. S., 3rd Corticotrophin-releasing factor, vasopressin and pro-opiomelanocortin mRNA responses to stress and opiates in the rat. J Physiol. 1988 Sep;403:511–523. doi: 10.1113/jphysiol.1988.sp017261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lightman S. L., Young W. S., 3rd Vasopressin, oxytocin, dynorphin, enkephalin and corticotrophin-releasing factor mRNA stimulation in the rat. J Physiol. 1987 Dec;394:23–39. doi: 10.1113/jphysiol.1987.sp016858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Plotsky P. M. Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology. 1987 Sep;121(3):924–930. doi: 10.1210/endo-121-3-924. [DOI] [PubMed] [Google Scholar]
  31. Plotsky P. M., Otto S., Sapolsky R. M. Inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation by delayed glucocorticoid feedback. Endocrinology. 1986 Sep;119(3):1126–1130. doi: 10.1210/endo-119-3-1126. [DOI] [PubMed] [Google Scholar]
  32. Plotsky P. M., Sawchenko P. E. Hypophysial-portal plasma levels, median eminence content, and immunohistochemical staining of corticotropin-releasing factor, arginine vasopressin, and oxytocin after pharmacological adrenalectomy. Endocrinology. 1987 Apr;120(4):1361–1369. doi: 10.1210/endo-120-4-1361. [DOI] [PubMed] [Google Scholar]
  33. Ptashne M. How eukaryotic transcriptional activators work. Nature. 1988 Oct 20;335(6192):683–689. doi: 10.1038/335683a0. [DOI] [PubMed] [Google Scholar]
  34. Reul J. M., de Kloet E. R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 1985 Dec;117(6):2505–2511. doi: 10.1210/endo-117-6-2505. [DOI] [PubMed] [Google Scholar]
  35. Saphier D., Feldman S. Iontophoretic application of glucocorticoids inhibits identified neurones in the rat paraventricular nucleus. Brain Res. 1988 Jun 21;453(1-2):183–190. doi: 10.1016/0006-8993(88)90157-6. [DOI] [PubMed] [Google Scholar]
  36. Sar M., Stumpf W. E., Miller R. J., Chang K. J., Cuatrecasas P. Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol. 1978 Nov 1;182(1):17–37. doi: 10.1002/cne.901820103. [DOI] [PubMed] [Google Scholar]
  37. Sawchenko P. E. Effects of catecholamine-depleting medullary knife cuts on corticotropin-releasing factor and vasopressin immunoreactivity in the hypothalamus of normal and steroid-manipulated rats. Neuroendocrinology. 1988 Nov;48(5):459–470. doi: 10.1159/000125050. [DOI] [PubMed] [Google Scholar]
  38. Sawchenko P. E., Swanson L. W. Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science. 1981 Nov 6;214(4521):685–687. doi: 10.1126/science.7292008. [DOI] [PubMed] [Google Scholar]
  39. Sawchenko P. E., Swanson L. W., Vale W. W. Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1883–1887. doi: 10.1073/pnas.81.6.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Suda T., Yajima F., Tomori N., Demura H., Shizume K. In vitro study of immunoreactive corticotropin-releasing factor release from the rat hypothalamus. Life Sci. 1985 Oct 21;37(16):1499–1505. doi: 10.1016/0024-3205(85)90181-x. [DOI] [PubMed] [Google Scholar]
  41. Sutanto W., van Eekelen J. A., Reul J. M., de Kloet E. R. Species-specific topography of corticosteroid receptor types in rat and hamster brain. Neuroendocrinology. 1988 May;47(5):398–404. doi: 10.1159/000124954. [DOI] [PubMed] [Google Scholar]
  42. Tramu G., Croix C., Pillez A. Ability of the CRF immunoreactive neurons of the paraventricular nucleus to produce a vasopressin-like material. Immunohistochemical demonstration in adrenalectomized guinea pigs and rats. Neuroendocrinology. 1983 Dec;37(6):467–469. doi: 10.1159/000123595. [DOI] [PubMed] [Google Scholar]
  43. Wamsley J. K., Young W. S., 3rd, Kuhar M. J. Immunohistochemical localization of enkephalin in rat forebrain. Brain Res. 1980 May 19;190(1):153–174. doi: 10.1016/0006-8993(80)91166-x. [DOI] [PubMed] [Google Scholar]
  44. Wolfson B., Manning R. W., Davis L. G., Arentzen R., Baldino F., Jr Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy. Nature. 1985 May 2;315(6014):59–61. doi: 10.1038/315059a0. [DOI] [PubMed] [Google Scholar]
  45. Young W. S., 3rd, Bonner T. I., Brann M. R. Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9827–9831. doi: 10.1073/pnas.83.24.9827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Young W. S., 3rd Corticotropin-releasing factor mRNA in the hypothalamus is affected differently by drinking saline and by dehydration. FEBS Lett. 1986 Nov 10;208(1):158–162. doi: 10.1016/0014-5793(86)81553-8. [DOI] [PubMed] [Google Scholar]
  47. Young W. S., 3rd, Mezey E., Siegel R. E. Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats. Neurosci Lett. 1986 Oct 8;70(2):198–203. doi: 10.1016/0304-3940(86)90463-5. [DOI] [PubMed] [Google Scholar]
  48. Young W. S., 3rd, Mezey E., Siegel R. E. Vasopressin and oxytocin mRNAs in adrenalectomized and Brattleboro rats: analysis by quantitative in situ hybridization histochemistry. Brain Res. 1986 Dec;387(3):231–241. doi: 10.1016/0169-328x(86)90029-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES