Skip to main content
Cardiovascular Diseases logoLink to Cardiovascular Diseases
. 1981 Sep;8(3):435–454.

What measurements are necessary for a comprehensive evaluation of the peripheral arterial circulation? *

Robert S Reneman 1
PMCID: PMC287972  PMID: 15216202

Abstract

Several methods are available to detect atherosclerotic lesions with a severe degree of stenosis (>70%), but the diagnosis of atherosclerotic lesions with no stenosis or with a minor degree of stenosis (<20%), is problematic. Hemodynamics associated with stenotic lesions are well described by the relationship of blood pressure and blood flow velocity, both as a function of time and localization (along the length and cross-section of the vessel). The use of this relationship in the clinic is difficult because no precise information is available about the geometry and branching of arteries, blood viscosity, and the velocity distribution over the cross-sectional area of the blood vessel. Besides, the invasiveness of the technique to measure arterial pressure as a function of time and localization does not allow routine application in patients. Because of these limitations, alternative methods have been developed. The degree and extensiveness of atherosclerotic disease can, for instance, be estimated from the changes in maximum blood flow velocity and in velocity profile, i.e., velocity distribution along the cross-section of the vessel. Moreover, the delay between simultaneously recorded arterial blood flow velocity tracings (pulse-wave velocity determination) is used to assess the elastic properties of the vessel. Changes in velocity profile occur at relatively slight degrees of arterial stenosis (around 20%), so that determination of these profiles along diseased arteries may contribute to the early diagnosis of atherosclerotic lesions.

In man, transcutaneous information about the maximum and mean blood flow velocities over the cross-sectional area of the artery as an instantaneous function of time as well as the flow pattern can be obtained online with continuous wave Doppler flowmeters, at least when audio spectrum analysis is used as a processing technique. Velocity profiles can be determined with multichannel pulsed Doppler systems if the resolution of the system is adequate and a sufficient number of sample volumes can be obtained, limiting the interpolation between these samples. The on-line recording of velocity profiles can be facilitated by combining the pulsed Doppler device with either a velocity imaging system or a B-mode scan. In systems with a high resolution (sample distance 0.5 mm), one should be able to detect local disturbances in the velocity profile at the site of the lesion (due to local increases in shear stress) and proximal to the lesion (due to reflections), so that lesions with a minor degree of stenosis can be detected. In resistive systems (e.g., internal carotid arteries) in which the relationship between pressure and velocity changes during the cardiac cycle is relatively simple, the elasticity of the arterial wall can be determined by relating the relative diameter changes of the vessel, determined on-line with multichannel pulsed Doppler systems, to the instantaneous velocity pulse.

Although the detection of atherosclerotic lesions at an early stage of the disease with sophisticated Doppler devices looks promising, further clinical evaluation is required.

Full text

PDF
435

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashton H. Effect of inflatable plastic splints on blood flow. Br Med J. 1966 Dec 10;2(5527):1427–1430. doi: 10.1136/bmj.2.5527.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON A. C. On the physical equilibrium of small blood vessels. Am J Physiol. 1951 Feb;164(2):319–329. doi: 10.1152/ajplegacy.1951.164.2.319. [DOI] [PubMed] [Google Scholar]
  3. BURTON A. C., YAMADA S. Relation between blood pressure and flow in the human forearm. J Appl Physiol. 1951 Nov;4(5):329–339. doi: 10.1152/jappl.1951.4.5.329. [DOI] [PubMed] [Google Scholar]
  4. Barnes R. W., Bone G. E., Reinertson J., Slaymaker E. E., Hokanson D. E., Strandness D. E., Jr Noninvasive ultrasonic carotid angiography: prospective validation by contrast arteriography. Surgery. 1976 Sep;80(3):328–335. [PubMed] [Google Scholar]
  5. Baskett J. J., Beasley M. G., Murphy G. J., Hyams D. E., Gosling R. G. Screening for carotid junction disease by spectral analysis of Doppler signals. Cardiovasc Res. 1977 Mar;11(2):147–155. doi: 10.1093/cvr/11.2.147. [DOI] [PubMed] [Google Scholar]
  6. Blackshear W. M., Jr, Phillips D. J., Strandness D. E., Jr Pulsed Doppler assessment of normal human femoral artery velocity patterns. J Surg Res. 1979 Aug;27(2):73–83. doi: 10.1016/0022-4804(79)90113-6. [DOI] [PubMed] [Google Scholar]
  7. Bollinger A., Schlumph M., Butti P., Grüntzig A. Measurement of systolic ankle blood pressure with Doppler ultrasound at rest and after exercise in patients with leg artery occlusions. Scand J Clin Lab Invest Suppl. 1973;128:123–128. [PubMed] [Google Scholar]
  8. Bouskela E., Wiederhielm C. A. Microvascular myogenic reaction in the wing of the intact unanesthetized bat. Am J Physiol. 1979 Jul;237(1):H59–H65. doi: 10.1152/ajpheart.1979.237.1.H59. [DOI] [PubMed] [Google Scholar]
  9. Darling R. C., Raines J. K., Brener B. J., Austen W. G. Quantitative segmental pulse volume recorder: a clinical tool. Surgery. 1972 Dec;72(6):873–877. [PubMed] [Google Scholar]
  10. Duncan G. W., Gruber J. O., Dewey C. F., Jr, Myers G. S., Lees R. S. Evaluation of carotid stenosis by phonoangiography. N Engl J Med. 1975 Nov 27;293(22):1124–1128. doi: 10.1056/NEJM197511272932205. [DOI] [PubMed] [Google Scholar]
  11. Evans D. H., Barrie W. W., Asher M. J., Bentley S., Bell P. R. The relationship between ultrasonic pulsatility index and proximal arterial stenosis in a canine model. Circ Res. 1980 Apr;46(4):470–475. doi: 10.1161/01.res.46.4.470. [DOI] [PubMed] [Google Scholar]
  12. GASKELL P., DIOSY A. Influence of local temperature and of digital nerve block on critical opening pressure of vessels in the finger. Circ Res. 1959 Nov;7:1000–1005. doi: 10.1161/01.res.7.6.1000. [DOI] [PubMed] [Google Scholar]
  13. GASKELL P., KRISMAN A. M. Critical closing pressure of vessels supplying the capillary loops of the nailfold. Circ Res. 1958 Jul;6(4):461–467. doi: 10.1161/01.res.6.4.461. [DOI] [PubMed] [Google Scholar]
  14. Gee W., Oller D. W., Homer L. D., Bailey R. C. Simultaneous bilateral determination of the systolic pressure of the ophthalmic arteries by ocular pneumoplethysmography. Invest Ophthalmol Vis Sci. 1977 Jan;16(1):86–89. [PubMed] [Google Scholar]
  15. Gee W., Oller D. W., Wylie E. J. Noninvasive diagnosis of carotid occlusion by ocular pneumoplethysmography. Stroke. 1976 Jan-Feb;7(1):18–21. doi: 10.1161/01.str.7.1.18. [DOI] [PubMed] [Google Scholar]
  16. Giddens D. P., Mabon R. F., Cassanova R. A. Measurements of disordered flows distal to subtotal vascular stenoses in the thoracic aortas of dogs. Circ Res. 1976 Jul;39(1):112–119. doi: 10.1161/01.res.39.1.112. [DOI] [PubMed] [Google Scholar]
  17. Green P. S., Taenzer J. C., Ramsey S. D., Jr, Holzemer J. F., Suarez J. R., Marich K. W., Evans T. C., Sandok B. A., Greenleaf J. F. A real-time ultrasonic imaging system for carotid arteriography. Ultrasound Med Biol. 1977;3(2-3):129–142. doi: 10.1016/0301-5629(77)90065-5. [DOI] [PubMed] [Google Scholar]
  18. Lezack J. D., Carter S. A. The relationship of distal systolic pressures to the clinical and angiographic findings in limbs with arterial occlusive disease. Scand J Clin Lab Invest Suppl. 1973;128:97–101. [PubMed] [Google Scholar]
  19. Mozersky D. J., Hokanson D. E., Sumner D. S., Strandness D. E., Jr Ultrasonic visualization of the arterial lumen. Surgery. 1972 Aug;72(2):253–259. [PubMed] [Google Scholar]
  20. Newman D. L., Westerhof N., Sipkema P. Modelling of aortic stenosis. J Biomech. 1979;12(3):229–235. doi: 10.1016/0021-9290(79)90146-5. [DOI] [PubMed] [Google Scholar]
  21. Raines J. K., Jaffrin M. Y., Shapiro A. H. A computer simulation of arterial dynamics in the human leg. J Biomech. 1974 Jan;7(1):77–91. doi: 10.1016/0021-9290(74)90072-4. [DOI] [PubMed] [Google Scholar]
  22. Reid J. M., Spencer M. P. Ultrasonic Doppler technique for imaging blood vessels. Science. 1972 Jun 16;176(4040):1235–1236. doi: 10.1126/science.176.4040.1235. [DOI] [PubMed] [Google Scholar]
  23. Reneman R. S., Clarke H. F., Simmons N., Spencer M. P. In vivo comparison of electromagnetic and Doppler flowmeters: with special attention to the processing of the analogue Doppler flow signal. Cardiovasc Res. 1973 Jul;7(4):557–566. doi: 10.1093/cvr/7.4.557. [DOI] [PubMed] [Google Scholar]
  24. Reneman R. S., Hoeks A., Spencer M. P. Doppler ultrasound in the evaluation of the peripheral arterial circulation. Angiology. 1979 Aug;30(8):526–538. doi: 10.1177/000331977903000803. [DOI] [PubMed] [Google Scholar]
  25. Reneman R. S., Slaaf D. W., Lindbom L., Tangelder G. J., Arfors K. E. Muscle blood flow disturbances produced by simultaneously elevated venous and total muscle tissue pressure. Microvasc Res. 1980 Nov;20(3):307–318. doi: 10.1016/0026-2862(80)90031-x. [DOI] [PubMed] [Google Scholar]
  26. Reneman R. S., Spencer M. P. Local Doppler audio spectra in normal and stenosed carotid arteries in man. Ultrasound Med Biol. 1979;5(1):1–11. doi: 10.1016/0301-5629(79)90122-4. [DOI] [PubMed] [Google Scholar]
  27. Skidmore R., Woodcock J. P. Physiological interpretation of Doppler-shift waveforms--I. Theoretical considerations. Ultrasound Med Biol. 1980;6(1):7–10. doi: 10.1016/0301-5629(80)90057-5. [DOI] [PubMed] [Google Scholar]
  28. Skidmore R., Woodcock J. P. Physiological interpretation of Doppler-shift waveforms--II. Validation of the Laplace transform method for characterisation of the common femoral blood-velocity/time waveform. Ultrasound Med Biol. 1980;6(3):219–225. doi: 10.1016/0301-5629(80)90016-2. [DOI] [PubMed] [Google Scholar]
  29. Skidmore R., Woodcock J. P., Wells P. N. Physiological interpretation of Doppler-shift waveforms--III. Clinical results. Ultrasound Med Biol. 1980;6(3):227–231. doi: 10.1016/0301-5629(80)90017-4. [DOI] [PubMed] [Google Scholar]
  30. Spencer M. P., Reid J. M., Davis D. L., Paulson P. S. Cervical carotid imaging with a continuous-wave Doppler flowmeter. Stroke. 1974 Mar-Apr;5(2):145–154. doi: 10.1161/01.str.5.2.145. [DOI] [PubMed] [Google Scholar]
  31. Sumner D. S., Strandness D. E., Jr The relationship between calf blood flow and ankle blood pressure in patients with intermittent claudication. Surgery. 1969 May;65(5):763–771. [PubMed] [Google Scholar]
  32. Woodcock J. P., Gosling R. G., FitzGerald D. E. A new non-invasive technique for assessment of superficial femoral artery obstruction. Br J Surg. 1972 Mar;59(3):226–231. doi: 10.1002/bjs.1800590320. [DOI] [PubMed] [Google Scholar]
  33. Young D. F., Tsai F. Y. Flow characteristics in models of arterial stenoses. I. Steady flow. J Biomech. 1973 Jul;6(4):395–410. doi: 10.1016/0021-9290(73)90099-7. [DOI] [PubMed] [Google Scholar]

Articles from Cardiovascular Diseases are provided here courtesy of Texas Heart Institute

RESOURCES