Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Feb;91(2):724–729. doi: 10.1172/JCI116254

Prevention of smooth muscle cell outgrowth from human atherosclerotic plaque by a recombinant cytotoxin specific for the epidermal growth factor receptor.

J G Pickering 1, P A Bacha 1, L Weir 1, J Jekanowski 1, J C Nichols 1, J M Isner 1
PMCID: PMC288015  PMID: 8432873

Abstract

Smooth muscle cell proliferation in the intima of arteries is a principal event associated with vascular narrowing after balloon angioplasty and bypass surgery. Techniques for limiting smooth muscle cell proliferation, however, have not as yet yielded any therapeutic benefit for these conditions. This may reflect the present lack of sufficiently potent and specific inhibitors of smooth muscle cell proliferation. DAB389 EGF is a genetically engineered fusion protein in which the receptor-binding domain of diphtheria toxin has been replaced by human epidermal growth factor. We evaluated the effect of this fusion toxin on human vascular smooth muscle cells in culture. Incubation of proliferating cells with DAB389 EGF yielded a dose-dependent inhibition of protein synthesis, as assessed by uptake of [3H]leucine, with an IC50 of 40 pM. The cytotoxic effect was inhibited in the presence of excess EGF or with monoclonal antibody to the EGF receptor. We further studied the effect of the fusion toxin on smooth muscle cell outgrowth from human atherosclerotic plaque. Outgrowth was markedly inhibited after as little as 1 h of exposure to the fusion protein. Furthermore, complete inhibition of proliferation of cells within the plaque could be attained. These results demonstrate that DAB389 EGF is highly cytotoxic to human smooth muscle cells proliferating in culture and can prevent smooth muscle cell outgrowth from "growth-stimulated" human atherosclerotic plaque. DAB389 EGF may therefore be of therapeutic value in vascular diseases characterized by smooth muscle cell accumulation.

Full text

PDF
724

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clowes A. W., Reidy M. A., Clowes M. M. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest. 1983 Sep;49(3):327–333. [PubMed] [Google Scholar]
  2. Epstein S. E., Siegall C. B., Biro S., Fu Y. M., FitzGerald D., Pastan I. Cytotoxic effects of a recombinant chimeric toxin on rapidly proliferating vascular smooth muscle cells. Circulation. 1991 Aug;84(2):778–787. doi: 10.1161/01.cir.84.2.778. [DOI] [PubMed] [Google Scholar]
  3. Garratt K. N., Edwards W. D., Kaufmann U. P., Vlietstra R. E., Holmes D. R., Jr Differential histopathology of primary atherosclerotic and restenotic lesions in coronary arteries and saphenous vein bypass grafts: analysis of tissue obtained from 73 patients by directional atherectomy. J Am Coll Cardiol. 1991 Feb;17(2):442–448. doi: 10.1016/s0735-1097(10)80113-5. [DOI] [PubMed] [Google Scholar]
  4. Hanke H., Strohschneider T., Oberhoff M., Betz E., Karsch K. R. Time course of smooth muscle cell proliferation in the intima and media of arteries following experimental angioplasty. Circ Res. 1990 Sep;67(3):651–659. doi: 10.1161/01.res.67.3.651. [DOI] [PubMed] [Google Scholar]
  5. Heimbrook D. C., Stirdivant S. M., Ahern J. D., Balishin N. L., Patrick D. R., Edwards G. M., Defeo-Jones D., FitzGerald D. J., Pastan I., Oliff A. Transforming growth factor alpha-Pseudomonas exotoxin fusion protein prolongs survival of nude mice bearing tumor xenografts. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4697–4701. doi: 10.1073/pnas.87.12.4697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holmes D. R., Jr, Vlietstra R. E., Smith H. C., Vetrovec G. W., Kent K. M., Cowley M. J., Faxon D. P., Gruentzig A. R., Kelsey S. F., Detre K. M. Restenosis after percutaneous transluminal coronary angioplasty (PTCA): a report from the PTCA Registry of the National Heart, Lung, and Blood Institute. Am J Cardiol. 1984 Jun 15;53(12):77C–81C. doi: 10.1016/0002-9149(84)90752-5. [DOI] [PubMed] [Google Scholar]
  7. Ip J. H., Fuster V., Badimon L., Badimon J., Taubman M. B., Chesebro J. H. Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol. 1990 Jun;15(7):1667–1687. doi: 10.1016/0735-1097(90)92845-s. [DOI] [PubMed] [Google Scholar]
  8. Johnson D. E., Hinohara T., Selmon M. R., Braden L. J., Simpson J. B. Primary peripheral arterial stenoses and restenoses excised by transluminal atherectomy: a histopathologic study. J Am Coll Cardiol. 1990 Feb;15(2):419–425. doi: 10.1016/s0735-1097(10)80071-3. [DOI] [PubMed] [Google Scholar]
  9. Leclerc G., Gal D., Takeshita S., Nikol S., Weir L., Isner J. M. Percutaneous arterial gene transfer in a rabbit model. Efficiency in normal and balloon-dilated atherosclerotic arteries. J Clin Invest. 1992 Sep;90(3):936–944. doi: 10.1172/JCI115970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Middlebrook J. L., Dorland R. B., Leppla S. H. Association of diphtheria toxin with Vero cells. Demonstration of a receptor. J Biol Chem. 1978 Oct 25;253(20):7325–7330. [PubMed] [Google Scholar]
  11. Moya M., Dautry-Varsat A., Goud B., Louvard D., Boquet P. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol. 1985 Aug;101(2):548–559. doi: 10.1083/jcb.101.2.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nabel E. G., Plautz G., Nabel G. J. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science. 1990 Sep 14;249(4974):1285–1288. doi: 10.1126/science.2119055. [DOI] [PubMed] [Google Scholar]
  13. Nobuyoshi M., Kimura T., Ohishi H., Horiuchi H., Nosaka H., Hamasaki N., Yokoi H., Kim K. Restenosis after percutaneous transluminal coronary angioplasty: pathologic observations in 20 patients. J Am Coll Cardiol. 1991 Feb;17(2):433–439. doi: 10.1016/s0735-1097(10)80111-1. [DOI] [PubMed] [Google Scholar]
  14. Pai L. H., Gallo M. G., FitzGerald D. J., Pastan I. Antitumor activity of a transforming growth factor alpha-Pseudomonas exotoxin fusion protein (TGF-alpha-PE40). Cancer Res. 1991 Jun 1;51(11):2808–2812. [PubMed] [Google Scholar]
  15. Pastan I., FitzGerald D. Recombinant toxins for cancer treatment. Science. 1991 Nov 22;254(5035):1173–1177. doi: 10.1126/science.1683495. [DOI] [PubMed] [Google Scholar]
  16. Pickering J. G., Weir L., Rosenfield K., Stetz J., Jekanowski J., Isner J. M. Smooth muscle cell outgrowth from human atherosclerotic plaque: implications for the assessment of lesion biology. J Am Coll Cardiol. 1992 Nov 15;20(6):1430–1439. doi: 10.1016/0735-1097(92)90259-p. [DOI] [PubMed] [Google Scholar]
  17. Sandvig K., Olsnes S. Entry of the toxic proteins abrin, modeccin, ricin, and diphtheria toxin into cells. II. Effect of pH, metabolic inhibitors, and ionophores and evidence for toxin penetration from endocytotic vesicles. J Biol Chem. 1982 Jul 10;257(13):7504–7513. [PubMed] [Google Scholar]
  18. Serruys P. W., Luijten H. E., Beatt K. J., Geuskens R., de Feyter P. J., van den Brand M., Reiber J. H., ten Katen H. J., van Es G. A., Hugenholtz P. G. Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation. 1988 Feb;77(2):361–371. doi: 10.1161/01.cir.77.2.361. [DOI] [PubMed] [Google Scholar]
  19. Shaw J. P., Akiyoshi D. E., Arrigo D. A., Rhoad A. E., Sullivan B., Thomas J., Genbauffe F. S., Bacha P., Nichols J. C. Cytotoxic properties of DAB486EGF and DAB389EGF, epidermal growth factor (EGF) receptor-targeted fusion toxins. J Biol Chem. 1991 Nov 5;266(31):21118–21124. [PubMed] [Google Scholar]
  20. Steele P. M., Chesebro J. H., Stanson A. W., Holmes D. R., Jr, Dewanjee M. K., Badimon L., Fuster V. Balloon angioplasty. Natural history of the pathophysiological response to injury in a pig model. Circ Res. 1985 Jul;57(1):105–112. doi: 10.1161/01.res.57.1.105. [DOI] [PubMed] [Google Scholar]
  21. Ueda M., Becker A. E., Tsukada T., Numano F., Fujimoto T. Fibrocellular tissue response after percutaneous transluminal coronary angioplasty. An immunocytochemical analysis of the cellular composition. Circulation. 1991 Apr;83(4):1327–1332. doi: 10.1161/01.cir.83.4.1327. [DOI] [PubMed] [Google Scholar]
  22. Waters C. A., Schimke P. A., Snider C. E., Itoh K., Smith K. A., Nichols J. C., Strom T. B., Murphy J. R. Interleukin 2 receptor-targeted cytotoxicity. Receptor binding requirements for entry of a diphtheria toxin-related interleukin 2 fusion protein into cells. Eur J Immunol. 1990 Apr;20(4):785–791. doi: 10.1002/eji.1830200412. [DOI] [PubMed] [Google Scholar]
  23. Williams D. P., Parker K., Bacha P., Bishai W., Borowski M., Genbauffe F., Strom T. B., Murphy J. R. Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng. 1987 Dec;1(6):493–498. doi: 10.1093/protein/1.6.493. [DOI] [PubMed] [Google Scholar]
  24. Williams D. P., Snider C. E., Strom T. B., Murphy J. R. Structure/function analysis of interleukin-2-toxin (DAB486-IL-2). Fragment B sequences required for the delivery of fragment A to the cytosol of target cells. J Biol Chem. 1990 Jul 15;265(20):11885–11889. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES