Abstract
Congenital hypothyroidism strongly affects myelination. To assess the role of thyroid hormone on myelin gene expression, we have studied the effect of hypothyroidism on the steady state levels of myelin-associated glycoprotein (MAG) and its mRNA in rat brain during the first postnatal month. As studied by immunoblot analysis of several brain regions, MAG increased from days 10-15 onwards, reaching constant levels by days 20-25. Hypothyroid samples showed a delay in the accumulation of MAG that was more severe in rostral regions, such as cortex and hippocampus. The effect of hypothyroidism on the accumulation of the protein correlated with mRNA levels. MAG mRNA started to accumulate in the cerebrum of normal animals by postnatal day 7, reaching maximal levels by day 20. Hypothyroid rats showed a delay of several days in the onset of mRNA expression, increasing thereafter at the same rate as in normal animals, and eventually reaching similar values. When individual brain regions were analyzed, we found strong regional differences in the effect of hypothyroidism. The cerebral cortex was most affected, with messenger levels lower than in normal animals at all ages. In more caudal regions differences between control and hypothyroid rats were evident only at the earlier stages of myelination, with spontaneous recovery at later ages. By run on analysis, we found no differences in transcriptional activities of the MAG gene in normal, hypothyroid, or T4-treated rats. Therefore, the effects of hypothyroidism on MAG mRNA and protein levels were most likely caused by decreased mRNA stability. We propose that thyroid hormone contributes to enhanced myelin gene expression by affecting the stability of newly transcribed mRNA in the early phases of myelination.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamo A. M., Aloise P. A., Soto E. F., Pasquini J. M. Neonatal hyperthyroidism in the rat produces an increase in the activity of microperoxisomal marker enzymes coincident with biochemical signs of accelerated myelination. J Neurosci Res. 1990 Mar;25(3):353–359. doi: 10.1002/jnr.490250312. [DOI] [PubMed] [Google Scholar]
- Aniello F., Couchie D., Bridoux A. M., Gripois D., Nunez J. Splicing of juvenile and adult tau mRNA variants is regulated by thyroid hormone. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4035–4039. doi: 10.1073/pnas.88.9.4035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balázs R., Brooksbank B. W., Davison A. N., Eayrs J. T., Wilson D. A. The effect of neonatal thyroidectomy on myelination in the rat brain. Brain Res. 1969 Sep;15(1):219–232. doi: 10.1016/0006-8993(69)90321-7. [DOI] [PubMed] [Google Scholar]
- Bhat N. R., Rao G. S., Pieringer R. A. Investigations on myelination in vitro. Regulation of sulfolipid synthesis by thyroid hormone in cultures of dissociated brain cells from embryonic mice. J Biol Chem. 1981 Feb 10;256(3):1167–1171. [PubMed] [Google Scholar]
- Bhat N. R., Sarlieve L. L., Rao G. S., Pieringer R. A. Investigations on myelination in vitro. Regulation by thyroid hormone in cultures of dissociated brain cells from embryonic mice. J Biol Chem. 1979 Oct 10;254(19):9342–9344. [PubMed] [Google Scholar]
- Bradley D. J., Young W. S., 3rd, Weinberger C. Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7250–7254. doi: 10.1073/pnas.86.18.7250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brent G. A., Moore D. D., Larsen P. R. Thyroid hormone regulation of gene expression. Annu Rev Physiol. 1991;53:17–35. doi: 10.1146/annurev.ph.53.030191.000313. [DOI] [PubMed] [Google Scholar]
- Bögler O., Wren D., Barnett S. C., Land H., Noble M. Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6368–6372. doi: 10.1073/pnas.87.16.6368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campagnoni A. T., Macklin W. B. Cellular and molecular aspects of myelin protein gene expression. Mol Neurobiol. 1988 Spring;2(1):41–89. doi: 10.1007/BF02935632. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Danielson P. E., Forss-Petter S., Brow M. A., Calavetta L., Douglass J., Milner R. J., Sutcliffe J. G. p1B15: a cDNA clone of the rat mRNA encoding cyclophilin. DNA. 1988 May;7(4):261–267. doi: 10.1089/dna.1988.7.261. [DOI] [PubMed] [Google Scholar]
- Dussault J. H., Ruel J. Thyroid hormones and brain development. Annu Rev Physiol. 1987;49:321–334. doi: 10.1146/annurev.ph.49.030187.001541. [DOI] [PubMed] [Google Scholar]
- Evans R. M. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farsetti A., Mitsuhashi T., Desvergne B., Robbins J., Nikodem V. M. Molecular basis of thyroid hormone regulation of myelin basic protein gene expression in rodent brain. J Biol Chem. 1991 Dec 5;266(34):23226–23232. [PubMed] [Google Scholar]
- Flynn T. J., Deshmukh D. S., Pieringer R. A. Effects of altered thyroid function on galactosyl diacylglycerol metabolism in myelinating rat brain. J Biol Chem. 1977 Aug 25;252(16):5864–5870. [PubMed] [Google Scholar]
- Fujita N., Sato S., Kurihara T., Inuzuka T., Takahashi Y., Miyatake T. Developmentally regulated alternative splicing of brain myelin-associated glycoprotein mRNA is lacking in the quaking mouse. FEBS Lett. 1988 May 23;232(2):323–327. doi: 10.1016/0014-5793(88)80762-2. [DOI] [PubMed] [Google Scholar]
- Glass C. K., Holloway J. M. Regulation of gene expression by the thyroid hormone receptor. Biochim Biophys Acta. 1990 Dec 11;1032(2-3):157–176. doi: 10.1016/0304-419x(90)90002-i. [DOI] [PubMed] [Google Scholar]
- Gould E., Butcher L. L. Developing cholinergic basal forebrain neurons are sensitive to thyroid hormone. J Neurosci. 1989 Sep;9(9):3347–3358. doi: 10.1523/JNEUROSCI.09-09-03347.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrin D. L., Schmidt G. W. Rapid, reversible staining of northern blots prior to hybridization. Biotechniques. 1988 Mar;6(3):196-7, 199-200. [PubMed] [Google Scholar]
- Hubank M., Sinha A. K., Gullo D., Ekins R. P. Nuclear tri-iodothyronine (T3) binding in neonatal rat brain suggests a direct glial requirement for T3 during development. J Endocrinol. 1990 Sep;126(3):409–415. doi: 10.1677/joe.0.1260409. [DOI] [PubMed] [Google Scholar]
- Johnson P. W., Abramow-Newerly W., Seilheimer B., Sadoul R., Tropak M. B., Arquint M., Dunn R. J., Schachner M., Roder J. C. Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron. 1989 Sep;3(3):377–385. doi: 10.1016/0896-6273(89)90262-6. [DOI] [PubMed] [Google Scholar]
- Kumar S., Cole R., Chiappelli F., de Vellis J. Differential regulation of oligodendrocyte markers by glucocorticoids: post-transcriptional regulation of both proteolipid protein and myelin basic protein and transcriptional regulation of glycerol phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6807–6811. doi: 10.1073/pnas.86.17.6807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai C., Brow M. A., Nave K. A., Noronha A. B., Quarles R. H., Bloom F. E., Milner R. J., Sutcliffe J. G. Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4337–4341. doi: 10.1073/pnas.84.12.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linial M., Gunderson N., Groudine M. Enhanced transcription of c-myc in bursal lymphoma cells requires continuous protein synthesis. Science. 1985 Dec 6;230(4730):1126–1132. doi: 10.1126/science.2999973. [DOI] [PubMed] [Google Scholar]
- Martini R., Schachner M. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. J Cell Biol. 1986 Dec;103(6 Pt 1):2439–2448. doi: 10.1083/jcb.103.6.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellström B., Naranjo J. R., Santos A., Gonzalez A. M., Bernal J. Independent expression of the alpha and beta c-erbA genes in developing rat brain. Mol Endocrinol. 1991 Sep;5(9):1339–1350. doi: 10.1210/mend-5-9-1339. [DOI] [PubMed] [Google Scholar]
- Mikoshiba K., Okano H., Tamura T., Ikenaka K. Structure and function of myelin protein genes. Annu Rev Neurosci. 1991;14:201–217. doi: 10.1146/annurev.ne.14.030191.001221. [DOI] [PubMed] [Google Scholar]
- Morreale de Escobar G., Pastor R., Obregon M. J., Escobar del Rey F. Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function. Endocrinology. 1985 Nov;117(5):1890–1900. doi: 10.1210/endo-117-5-1890. [DOI] [PubMed] [Google Scholar]
- Muñoz A., Rodriguez-Peña A., Perez-Castillo A., Ferreiro B., Sutcliffe J. G., Bernal J. Effects of neonatal hypothyroidism on rat brain gene expression. Mol Endocrinol. 1991 Feb;5(2):273–280. doi: 10.1210/mend-5-2-273. [DOI] [PubMed] [Google Scholar]
- Nicholson J. L., Altman J. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res. 1972 Sep 15;44(1):13–23. doi: 10.1016/0006-8993(72)90362-9. [DOI] [PubMed] [Google Scholar]
- Noguchi T., Sugisaki T. Hypomyelination in the cerebrum of the congenitally hypothyroid mouse (hyt). J Neurochem. 1984 Mar;42(3):891–893. doi: 10.1111/j.1471-4159.1984.tb02768.x. [DOI] [PubMed] [Google Scholar]
- Poltorak M., Sadoul R., Keilhauer G., Landa C., Fahrig T., Schachner M. Myelin-associated glycoprotein, a member of the L2/HNK-1 family of neural cell adhesion molecules, is involved in neuron-oligodendrocyte and oligodendrocyte-oligodendrocyte interaction. J Cell Biol. 1987 Oct;105(4):1893–1899. doi: 10.1083/jcb.105.4.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prieto J. J., Rueda J., Sala M. L., Merchan J. A. Lectin staining of saccharides in the normal and hypothyroid developing organ of Corti. Brain Res Dev Brain Res. 1990 Mar 1;52(1-2):141–149. doi: 10.1016/0165-3806(90)90229-r. [DOI] [PubMed] [Google Scholar]
- Salemi G., Ferraro D., Savettieri G. Triiodothyronine accelerates the synthesis of synapsin I in developing neurons from fetal rat brain cultured in a synthetic medium. Neurochem Res. 1990 Aug;15(8):827–831. doi: 10.1007/BF00968561. [DOI] [PubMed] [Google Scholar]
- Saneto R. P., de Vellis J. Characterization of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined medium. Proc Natl Acad Sci U S A. 1985 May;82(10):3509–3513. doi: 10.1073/pnas.82.10.3509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sap J., Muñoz A., Damm K., Goldberg Y., Ghysdael J., Leutz A., Beug H., Vennström B. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature. 1986 Dec 18;324(6098):635–640. doi: 10.1038/324635a0. [DOI] [PubMed] [Google Scholar]
- Shanker G., Campagnoni A. T., Pieringer R. A. Investigations on myelinogenesis in vitro: developmental expression of myelin basic protein mRNA and its regulation by thyroid hormone in primary cerebral cell cultures from embryonic mice. J Neurosci Res. 1987;17(3):220–224. doi: 10.1002/jnr.490170304. [DOI] [PubMed] [Google Scholar]
- Silva J. E., Matthews P. S. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism. J Clin Invest. 1984 Sep;74(3):1035–1049. doi: 10.1172/JCI111471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silva J. E., Rudas P. Effects of congenital hypothyroidism on microtubule-associated protein-2 expression in the cerebellum of the rat. Endocrinology. 1990 Feb;126(2):1276–1282. doi: 10.1210/endo-126-2-1276. [DOI] [PubMed] [Google Scholar]
- Tosic M., Roach A., de Rivaz J. C., Dolivo M., Matthieu J. M. Post-transcriptional events are responsible for low expression of myelin basic protein in myelin deficient mice: role of natural antisense RNA. EMBO J. 1990 Feb;9(2):401–406. doi: 10.1002/j.1460-2075.1990.tb08124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verity A. N., Campagnoni A. T. Regional expression of myelin protein genes in the developing mouse brain: in situ hybridization studies. J Neurosci Res. 1988 Oct-Dec;21(2-4):238–248. doi: 10.1002/jnr.490210216. [DOI] [PubMed] [Google Scholar]
- Walravens P., Chase H. P. Influence of thyroid on formation of myelin lipids. J Neurochem. 1969 Oct;16(10):1477–1484. doi: 10.1111/j.1471-4159.1969.tb09900.x. [DOI] [PubMed] [Google Scholar]
- Weinberger C., Thompson C. C., Ong E. S., Lebo R., Gruol D. J., Evans R. M. The c-erb-A gene encodes a thyroid hormone receptor. Nature. 1986 Dec 18;324(6098):641–646. doi: 10.1038/324641a0. [DOI] [PubMed] [Google Scholar]
- Yusta B., Besnard F., Ortiz-Caro J., Pascual A., Aranda A., Sarliève L. Evidence for the presence of nuclear 3,5,3'-triiodothyronine receptors in secondary cultures of pure rat oligodendrocytes. Endocrinology. 1988 May;122(5):2278–2284. doi: 10.1210/endo-122-5-2278. [DOI] [PubMed] [Google Scholar]