Abstract
CD8+ cytotoxic T lymphocytes (CTL) clones with specificity for herpes simplex virus (HSV) were derived from two donors with genital HSV-2 infection. These CTL clones specifically lysed HSV-infected autologous B lymphoblastoid cells, but not HSV-infected fibroblasts. Exogenous peptide loading sensitized both cell types to lysis by an HSV-specific CTL clone of known specificity. HSV infection rendered fibroblasts refractory to peptide sensitization. HSV infection also rendered fibroblasts and keratinocytes insensitive to lysis by allospecific CD8+ CTL clones. Lysis of B lymphoblastoid cells in this system was only slightly reduced by HSV infection. Reduction of fibroblast allospecific lysis was dose and time dependent and was blocked by acyclovir, indicating the involvement of a late HSV gene product. HSV caused a reduction of fibroblast cell surface HLA class I antigen, at least in part due to reduction of synthesis of heavy chain-beta 2 microglobulin heterodimers. These results suggest that HSV-induced blockade of antigen presentation by cutaneous cells to CD8+ CTL may be a mechanism by which HSV limits or evades the immune response of the host.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashley R. L., Militoni J., Lee F., Nahmias A., Corey L. Comparison of Western blot (immunoblot) and glycoprotein G-specific immunodot enzyme assay for detecting antibodies to herpes simplex virus types 1 and 2 in human sera. J Clin Microbiol. 1988 Apr;26(4):662–667. doi: 10.1128/jcm.26.4.662-667.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balachandran N., Harnish D., Rawls W. E., Bacchetti S. Glycoproteins of herpes simplex virus type 2 as defined by monoclonal antibodies. J Virol. 1982 Oct;44(1):344–355. doi: 10.1128/jvi.44.1.344-355.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnstable C. J., Bodmer W. F., Brown G., Galfre G., Milstein C., Williams A. F., Ziegler A. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell. 1978 May;14(1):9–20. doi: 10.1016/0092-8674(78)90296-9. [DOI] [PubMed] [Google Scholar]
- Billaud M., Rousset F., Calender A., Cordier M., Aubry J. P., Laisse V., Lenoir G. M. Low expression of lymphocyte function-associated antigen (LFA)-1 and LFA-3 adhesion molecules is a common trait in Burkitt's lymphoma associated with and not associated with Epstein-Barr virus. Blood. 1990 May 1;75(9):1827–1833. [PubMed] [Google Scholar]
- Biron C. A., Byron K. S., Sullivan J. L. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989 Jun 29;320(26):1731–1735. doi: 10.1056/NEJM198906293202605. [DOI] [PubMed] [Google Scholar]
- Bonneau R. H., Jennings S. R. Modulation of acute and latent herpes simplex virus infection in C57BL/6 mice by adoptive transfer of immune lymphocytes with cytolytic activity. J Virol. 1989 Mar;63(3):1480–1484. doi: 10.1128/jvi.63.3.1480-1484.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boshkov L. K., Macen J. L., McFadden G. Virus-induced loss of class I MHC antigens from the surface of cells infected with myxoma virus and malignant rabbit fibroma virus. J Immunol. 1992 Feb 1;148(3):881–887. [PubMed] [Google Scholar]
- Bushkin Y., Posnett D. N., Pernis B., Wang C. Y. A new HLA-linked T cell membrane molecule, related to the beta chain of the clonotypic receptor, is associated with T3. J Exp Med. 1986 Aug 1;164(2):458–473. doi: 10.1084/jem.164.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunningham A. L., Noble J. R. Role of keratinocytes in human recurrent herpetic lesions. Ability to present herpes simplex virus antigen and act as targets for T lymphocyte cytotoxicity in vitro. J Clin Invest. 1989 Feb;83(2):490–496. doi: 10.1172/JCI113908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunningham A. L., Turner R. R., Miller A. C., Para M. F., Merigan T. C. Evolution of recurrent herpes simplex lesions. An immunohistologic study. J Clin Invest. 1985 Jan;75(1):226–233. doi: 10.1172/JCI111678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fenwick M. L., Everett R. D. Inactivation of the shutoff gene (UL41) of herpes simplex virus types 1 and 2. J Gen Virol. 1990 Dec;71(Pt 12):2961–2967. doi: 10.1099/0022-1317-71-12-2961. [DOI] [PubMed] [Google Scholar]
- Fitzgerald-Bocarsly P., Howell D. M., Pettera L., Tehrani S., Lopez C. Immediate-early gene expression is sufficient for induction of natural killer cell-mediated lysis of herpes simplex virus type 1-infected fibroblasts. J Virol. 1991 Jun;65(6):3151–3160. doi: 10.1128/jvi.65.6.3151-3160.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamzaoui K., Kahan A., Ayed K., Hamza M. Cytotoxic T cells against herpes simplex virus in Behçet's disease. Clin Exp Immunol. 1990 Sep;81(3):390–395. doi: 10.1111/j.1365-2249.1990.tb05344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harding C. V., Unanue E. R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature. 1990 Aug 9;346(6284):574–576. doi: 10.1038/346574a0. [DOI] [PubMed] [Google Scholar]
- Haspel M. V., Pellegrino M. A., Lampert P. W., Oldstone M. B. Human histocompatibility determinants and virus antigens: effect of measles virus infection on HLA expression. J Exp Med. 1977 Jul 1;146(1):146–156. doi: 10.1084/jem.146.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings S. R., Rice P. L., Kloszewski E. D., Anderson R. W., Thompson D. L., Tevethia S. S. Effect of herpes simplex virus types 1 and 2 on surface expression of class I major histocompatibility complex antigens on infected cells. J Virol. 1985 Dec;56(3):757–766. doi: 10.1128/jvi.56.3.757-766.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kit S., Kit M., Qavi H., Trkula D., Otsuka H. Nucleotide sequence of the herpes simplex virus type 2 (HSV-2) thymidine kinase gene and predicted amino acid sequence of thymidine kinase polypeptide and its comparison with the HSV-1 thymidine kinase gene. Biochim Biophys Acta. 1983 Nov 17;741(2):158–170. doi: 10.1016/0167-4781(83)90056-8. [DOI] [PubMed] [Google Scholar]
- Kohl S., Loo L. S., Gonik B. Analysis in human neonates of defective antibody-dependent cellular cytotoxicity and natural killer cytotoxicity to herpes simplex virus-infected cells. J Infect Dis. 1984 Jul;150(1):14–19. doi: 10.1093/infdis/150.1.14. [DOI] [PubMed] [Google Scholar]
- Kuzushima K., Isobe K., Morishima T., Takatsuki A., Nakashima I. Inhibitory effect of herpes simplex virus infection to target cells on recognition of minor histocompatibility antigens by cytotoxic T lymphocytes. J Immunol. 1990 Jun 15;144(12):4536–4540. [PubMed] [Google Scholar]
- Lasky L. A., Dowbenko D. J. DNA sequence analysis of the type-common glycoprotein-D genes of herpes simplex virus types 1 and 2. DNA. 1984;3(1):23–29. doi: 10.1089/dna.1.1984.3.23. [DOI] [PubMed] [Google Scholar]
- Lausch R. N., Yeung K. C., Miller J. Z., Oakes J. E. Nucleotide sequences responsible for the inability of a herpes simplex virus type 2 strain to grow in human lymphocytes are identical to those responsible for its inability to grow in mouse tissues following ocular infection. Virology. 1990 Jun;176(2):319–328. doi: 10.1016/0042-6822(90)90001-8. [DOI] [PubMed] [Google Scholar]
- Legrain P., Voegtle D., Buttin G., Cazenave P. A. Idiotype-anti-idiotype interactions and the control of the anti-beta (2 leads to 6) polyfructosan response in the mouse: specificity and idiotypy of anti-ABPC48 anti-idiotypic monoclonal antibodies. Eur J Immunol. 1981 Sep;11(9):678–685. doi: 10.1002/eji.1830110903. [DOI] [PubMed] [Google Scholar]
- Liao N. S., Bix M., Zijlstra M., Jaenisch R., Raulet D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science. 1991 Jul 12;253(5016):199–202. doi: 10.1126/science.1853205. [DOI] [PubMed] [Google Scholar]
- McCune J. M., Humphreys R. E., Yocum R. R., Strominger J. L. Enhanced representation of HL-A antigens on human lymphocytes after mitogenesis induced by phytohemagglutinin or Epstein-Barr virus. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3206–3209. doi: 10.1073/pnas.72.8.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMichael A. J., Parham P., Rust N., Brodsky F. A monoclonal antibody that recognizes an antigenic determinant shared by HLA A2 and B17. Hum Immunol. 1980 Sep;1(2):121–129. doi: 10.1016/0198-8859(80)90099-3. [DOI] [PubMed] [Google Scholar]
- Mellencamp M. W., O'Brien P. C., Stevenson J. R. Pseudorabies virus-induced suppression of major histocompatibility complex class I antigen expression. J Virol. 1991 Jun;65(6):3365–3368. doi: 10.1128/jvi.65.6.3365-3368.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nash A. A., Jayasuriya A., Phelan J., Cobbold S. P., Waldmann H., Prospero T. Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. J Gen Virol. 1987 Mar;68(Pt 3):825–833. doi: 10.1099/0022-1317-68-3-825. [DOI] [PubMed] [Google Scholar]
- Paya C. V., Schoon R. A., Leibson P. J. Alternative mechanisms of natural killer cell activation during herpes simplex virus infection. J Immunol. 1990 Jun 1;144(11):4370–4375. [PubMed] [Google Scholar]
- Posavad C. M., Rosenthal K. L. Herpes simplex virus-infected human fibroblasts are resistant to and inhibit cytotoxic T-lymphocyte activity. J Virol. 1992 Nov;66(11):6264–6272. doi: 10.1128/jvi.66.11.6264-6272.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabinovitch P. S., June C. H., Grossmann A., Ledbetter J. A. Heterogeneity among T cells in intracellular free calcium responses after mitogen stimulation with PHA or anti-CD3. Simultaneous use of indo-1 and immunofluorescence with flow cytometry. J Immunol. 1986 Aug 1;137(3):952–961. [PubMed] [Google Scholar]
- Riddell S. R., Greenberg P. D. The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods. 1990 Apr 17;128(2):189–201. doi: 10.1016/0022-1759(90)90210-m. [DOI] [PubMed] [Google Scholar]
- Riddell S. R., Rabin M., Geballe A. P., Britt W. J., Greenberg P. D. Class I MHC-restricted cytotoxic T lymphocyte recognition of cells infected with human cytomegalovirus does not require endogenous viral gene expression. J Immunol. 1991 Apr 15;146(8):2795–2804. [PubMed] [Google Scholar]
- Rötzschke O., Falk K., Faath S., Rammensee H. G. On the nature of peptides involved in T cell alloreactivity. J Exp Med. 1991 Nov 1;174(5):1059–1071. doi: 10.1084/jem.174.5.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheppler J. A., Nicholson J. K., Swan D. C., Ahmed-Ansari A., McDougal J. S. Down-modulation of MHC-I in a CD4+ T cell line, CEM-E5, after HIV-1 infection. J Immunol. 1989 Nov 1;143(9):2858–2866. [PubMed] [Google Scholar]
- Schmid D. S. The human MHC-restricted cellular response to herpes simplex virus type 1 is mediated by CD4+, CD8- T cells and is restricted to the DR region of the MHC complex. J Immunol. 1988 May 15;140(10):3610–3616. [PubMed] [Google Scholar]
- Sethi K. K., Stroehmann I., Brandis H. Human T-cell cultures from virus-sensitized donors can mediate virus-specific and HLA-restricted cell lysis. Nature. 1980 Aug 14;286(5774):718–720. doi: 10.1038/286718a0. [DOI] [PubMed] [Google Scholar]
- Spruance S. L., Chow F. S. Pathogenesis of herpes simplex labialis. I. Replication of herpes simplex virus in cultures of epidermal cells from subjects with frequent recurrences. J Infect Dis. 1980 Nov;142(5):671–675. doi: 10.1093/infdis/142.5.671. [DOI] [PubMed] [Google Scholar]
- Symington F. W. Lymphotoxin, tumor necrosis factor, and gamma interferon are cytostatic for normal human keratinocytes. J Invest Dermatol. 1989 Jun;92(6):798–805. doi: 10.1111/1523-1747.ep12696816. [DOI] [PubMed] [Google Scholar]
- Symington F. W., Santos E. B. Lysis of human keratinocytes by allogeneic HLA class I-specific cytotoxic T cells. Keratinocyte ICAM-1 (CD54) and T cell LFA-1 (CD11a/CD18) mediate enhanced lysis of IFN-gamma-treated keratinocytes. J Immunol. 1991 Apr 1;146(7):2169–2175. [PubMed] [Google Scholar]
- Symington F. W., Santos E. B. Recognition of keratinocytes by cytotoxic T cells specific for conventional HLA class-I alloantigen. J Invest Dermatol. 1990 Aug;95(2):224–228. doi: 10.1111/1523-1747.ep12478064. [DOI] [PubMed] [Google Scholar]
- Tigges M. A., Koelle D., Hartog K., Sekulovich R. E., Corey L., Burke R. L. Human CD8+ herpes simplex virus-specific cytotoxic T-lymphocyte clones recognize diverse virion protein antigens. J Virol. 1992 Mar;66(3):1622–1634. doi: 10.1128/jvi.66.3.1622-1634.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torpey D. J., 3rd, Lindsley M. D., Rinaldo C. R., Jr HLA-restricted lysis of herpes simplex virus-infected monocytes and macrophages mediated by CD4+ and CD8+ T lymphocytes. J Immunol. 1989 Feb 15;142(4):1325–1332. [PubMed] [Google Scholar]
- Tsutsumi H., Bernstein J. M., Riepenhoff-Talty M., Cohen E., Orsini F., Ogra P. L. Immune responses to herpes simplex virus in patients with recurrent herpes labialis: I. Development of cell-mediated cytotoxic responses. Clin Exp Immunol. 1986 Dec;66(3):507–515. [PMC free article] [PubMed] [Google Scholar]
- Wold W. S., Gooding L. R. Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology. 1991 Sep;184(1):1–8. doi: 10.1016/0042-6822(91)90815-s. [DOI] [PubMed] [Google Scholar]
- Yasukawa M., Inatsuki A., Horiuchi T., Kobayashi Y. Functional heterogeneity among herpes simplex virus-specific human CD4+ T cells. J Immunol. 1991 Feb 15;146(4):1341–1347. [PubMed] [Google Scholar]
- Yasukawa M., Inatsuki A., Kobayashi Y. Differential in vitro activation of CD4+CD8- and CD8+CD4- herpes simplex virus-specific human cytotoxic T cells. J Immunol. 1989 Sep 15;143(6):2051–2057. [PubMed] [Google Scholar]
- Yasukawa M., Shiroguchi T., Kobayashi Y. HLA-restricted T lymphocyte-mediated cytotoxicity against herpes simplex virus-infected cells in humans. Infect Immun. 1983 Apr;40(1):190–197. doi: 10.1128/iai.40.1.190-197.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

