Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Mar;91(3):969–976. doi: 10.1172/JCI116318

Regulation of transferrin receptor expression and ferritin content in human mononuclear phagocytes. Coordinate upregulation by iron transferrin and downregulation by interferon gamma.

T F Byrd 1, M A Horwitz 1
PMCID: PMC288049  PMID: 8450071

Abstract

We have investigated the regulation of key human iron binding proteins in mononuclear phagocytes by IFN gamma and iron transferrin. In a previous study, we demonstrated that IFN gamma downregulates the expression on human monocytes of transferrin receptors, the major source of iron for the cell. In the present study, we show that IFN gamma also downregulates the intracellular concentration of ferritin, the major iron storage protein in the cell. By radioimmunoassay, the mean ferritin content of nonactivated monocytes was 361 +/- 107 fg/monocyte (mean +/- SEM) whereas the mean ferritin content of IFN gamma-activated monocytes was 64 +/- 13 fg/monocyte, an 82% reduction with activation (P < 0.01, t test). Consistent with its downregulating effect on these iron proteins, IFN gamma treatment also results in decreased iron incorporation. IFN gamma-activated monocytes incorporated 33% less iron from 59Fe-transferrin than nonactivated monocytes (P < 0.05, t test). Gel filtration chromatography revealed that incorporated iron is located primarily in ferritin in both nonactivated and IFN gamma-activated monocytes. Ferritin in IFN gamma-activated monocytes is saturated with approximately three times as much 59Fe as ferritin in nonactivated monocytes. We have also explored the effect of iron transferrin on transferrin receptor expression and intracellular ferritin content in human monocytes. We have found that iron transferrin markedly upregulates both transferrin receptor expression and intracellular ferritin content in both nonactivated (2.3- and 1.3-fold, respectively) and IFN gamma-activated (3.4- and 2.9-fold, respectively) monocytes. This study demonstrates that transferrin receptor expression and intracellular ferritin content in human monocytes is unidirectionally and coordinately upregulated by iron transferrin and unidirectionally and coordinately downregulated by IFN gamma.

Full text

PDF
969

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Hernández X., Licéaga J., McKay I. C., Brock J. H. Induction of hypoferremia and modulation of macrophage iron metabolism by tumor necrosis factor. Lab Invest. 1989 Sep;61(3):319–322. [PubMed] [Google Scholar]
  2. Andreesen R., Osterholz J., Bodemann H., Bross K. J., Costabel U., Löhr G. W. Expression of transferrin receptors and intracellular ferritin during terminal differentiation of human monocytes. Blut. 1984 Sep;49(3):195–202. doi: 10.1007/BF00319822. [DOI] [PubMed] [Google Scholar]
  3. Beutler B., Cerami A. Cachectin: more than a tumor necrosis factor. N Engl J Med. 1987 Feb 12;316(7):379–385. doi: 10.1056/NEJM198702123160705. [DOI] [PubMed] [Google Scholar]
  4. Britigan B. E., Serody J. S., Hayek M. B., Charniga L. M., Cohen M. S. Uptake of lactoferrin by mononuclear phagocytes inhibits their ability to form hydroxyl radical and protects them from membrane autoperoxidation. J Immunol. 1991 Dec 15;147(12):4271–4277. [PubMed] [Google Scholar]
  5. Brock J. H., Alvarez-Hernandez X. Modulation of macrophage iron metabolism by tumour necrosis factor and interleukin 1. FEMS Microbiol Immunol. 1989 Apr;1(5):309–309. doi: 10.1111/j.1574-6968.1989.tb02403.x. [DOI] [PubMed] [Google Scholar]
  6. Byrd T. F., Horwitz M. A. Chloroquine inhibits the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. A potential new mechanism for the therapeutic effect of chloroquine against intracellular pathogens. J Clin Invest. 1991 Jul;88(1):351–357. doi: 10.1172/JCI115301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Byrd T. F., Horwitz M. A. Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Invest. 1989 May;83(5):1457–1465. doi: 10.1172/JCI114038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Byrd T. F., Horwitz M. A. Lactoferrin inhibits or promotes Legionella pneumophila intracellular multiplication in nonactivated and interferon gamma-activated human monocytes depending upon its degree of iron saturation. Iron-lactoferrin and nonphysiologic iron chelates reverse monocyte activation against Legionella pneumophila. J Clin Invest. 1991 Oct;88(4):1103–1112. doi: 10.1172/JCI115409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Casey J. L., Hentze M. W., Koeller D. M., Caughman S. W., Rouault T. A., Klausner R. D., Harford J. B. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science. 1988 May 13;240(4854):924–928. doi: 10.1126/science.2452485. [DOI] [PubMed] [Google Scholar]
  10. Denis M. Killing of Mycobacterium tuberculosis within human monocytes: activation by cytokines and calcitriol. Clin Exp Immunol. 1991 May;84(2):200–206. doi: 10.1111/j.1365-2249.1991.tb08149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dinarello C. A. Interleukin-1. Rev Infect Dis. 1984 Jan-Feb;6(1):51–95. doi: 10.1093/clinids/6.1.51. [DOI] [PubMed] [Google Scholar]
  12. Finch C. A., Huebers H. Perspectives in iron metabolism. N Engl J Med. 1982 Jun 24;306(25):1520–1528. doi: 10.1056/NEJM198206243062504. [DOI] [PubMed] [Google Scholar]
  13. Hentze M. W., Rouault T. A., Harford J. B., Klausner R. D. Oxidation-reduction and the molecular mechanism of a regulatory RNA-protein interaction. Science. 1989 Apr 21;244(4902):357–359. doi: 10.1126/science.2711187. [DOI] [PubMed] [Google Scholar]
  14. Jacobs A. Ferritin: an interim review. Curr Top Hematol. 1985;5:25–62. [PubMed] [Google Scholar]
  15. Jacobs A. Low molecular weight intracellular iron transport compounds. Blood. 1977 Sep;50(3):433–439. [PubMed] [Google Scholar]
  16. Kung A. W., Lau K. S. Interferon-gamma inhibits thyrotropin-induced thyroglobulin gene transcription in cultured human thyrocytes. J Clin Endocrinol Metab. 1990 Jun;70(6):1512–1517. doi: 10.1210/jcem-70-6-1512. [DOI] [PubMed] [Google Scholar]
  17. Lalonde R. G., Holbein B. E. Role of iron in Trypanosoma cruzi infection of mice. J Clin Invest. 1984 Feb;73(2):470–476. doi: 10.1172/JCI111233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leibold E. A., Munro H. N. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5' untranslated region of ferritin heavy- and light-subunit mRNAs. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2171–2175. doi: 10.1073/pnas.85.7.2171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lähdevirta J., Maury C. P., Teppo A. M., Repo H. Elevated levels of circulating cachectin/tumor necrosis factor in patients with acquired immunodeficiency syndrome. Am J Med. 1988 Sep;85(3):289–291. doi: 10.1016/0002-9343(88)90576-1. [DOI] [PubMed] [Google Scholar]
  20. Maoz H., Polliack A., Barak V., Yatziv S., Biran S., Giloh H., Treves A. J. Parameters affecting the in vitro maturation of human monocytes to macrophages. Int J Cell Cloning. 1986 May;4(3):167–185. doi: 10.1002/stem.5530040303. [DOI] [PubMed] [Google Scholar]
  21. Mattia E., van Renswoude J. The pivotal role of ferritin in cellular iron homeostasis. Bioessays. 1988 Apr;8(4):107–111. doi: 10.1002/bies.950080405. [DOI] [PubMed] [Google Scholar]
  22. Mertz J. R., Theil E. C. Subunit dimers in sheep spleen apoferritin. The effect on iron storage. J Biol Chem. 1983 Oct 10;258(19):11719–11726. [PubMed] [Google Scholar]
  23. Musson R. A. Human serum induces maturation of human monocytes in vitro. Changes in cytolytic activity, intracellular lysosomal enzymes, and nonspecific esterase activity. Am J Pathol. 1983 Jun;111(3):331–340. [PMC free article] [PubMed] [Google Scholar]
  24. Müllner E. W., Neupert B., Kühn L. C. A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell. 1989 Jul 28;58(2):373–382. doi: 10.1016/0092-8674(89)90851-9. [DOI] [PubMed] [Google Scholar]
  25. Nash T. W., Libby D. M., Horwitz M. A. Interaction between the legionnaires' disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J Clin Invest. 1984 Sep;74(3):771–782. doi: 10.1172/JCI111493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pattanapanyasat K. Expression of isoferritins in peripheral blood lymphocytes: effect of phytohaemagglutinin and iron. Eur J Haematol. 1989 Aug;43(2):143–149. doi: 10.1111/j.1600-0609.1989.tb00270.x. [DOI] [PubMed] [Google Scholar]
  27. Pollack S., Aisen P., Lasky F. D., Vanderhoff G. Chelate mediated transfer of iron from transferrin to desferrioxamine. Br J Haematol. 1976 Oct;34(2):231–235. doi: 10.1111/j.1365-2141.1976.tb00193.x. [DOI] [PubMed] [Google Scholar]
  28. Portnoy D. A., Schreiber R. D., Connelly P., Tilney L. G. Gamma interferon limits access of Listeria monocytogenes to the macrophage cytoplasm. J Exp Med. 1989 Dec 1;170(6):2141–2146. doi: 10.1084/jem.170.6.2141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Radzioch D., Varesio L. c-fos mRNA expression in macrophages is downregulated by interferon-gamma at the posttranscriptional level. Mol Cell Biol. 1991 May;11(5):2718–2722. doi: 10.1128/mcb.11.5.2718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rogers J. T., Bridges K. R., Durmowicz G. P., Glass J., Auron P. E., Munro H. N. Translational control during the acute phase response. Ferritin synthesis in response to interleukin-1. J Biol Chem. 1990 Aug 25;265(24):14572–14578. [PubMed] [Google Scholar]
  31. Rouault T. A., Hentze M. W., Caughman S. W., Harford J. B., Klausner R. D. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA. Science. 1988 Sep 2;241(4870):1207–1210. doi: 10.1126/science.3413484. [DOI] [PubMed] [Google Scholar]
  32. Rouault T. A., Stout C. D., Kaptain S., Harford J. B., Klausner R. D. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications. Cell. 1991 Mar 8;64(5):881–883. doi: 10.1016/0092-8674(91)90312-m. [DOI] [PubMed] [Google Scholar]
  33. Roux-Lombard P., Modoux C., Cruchaud A., Dayer J. M. Purified blood monocytes from HIV 1-infected patients produce high levels of TNF alpha and IL-1. Clin Immunol Immunopathol. 1989 Mar;50(3):374–384. doi: 10.1016/0090-1229(89)90144-x. [DOI] [PubMed] [Google Scholar]
  34. Summers M., Worwood M., Jacobs A. Ferritin in normal erythrocytes, lymphocytes, polymorphs, and monocytes. Br J Haematol. 1974 Sep;28(1):19–26. doi: 10.1111/j.1365-2141.1974.tb06636.x. [DOI] [PubMed] [Google Scholar]
  35. Taetle R., Honeysett J. M. Gamma-interferon modulates human monocyte/macrophage transferrin receptor expression. Blood. 1988 Jun;71(6):1590–1595. [PubMed] [Google Scholar]
  36. Tanaka T., Araki E., Nitta K., Tateno M. Recombinant human tumor necrosis factor depresses serum iron in mice. J Biol Response Mod. 1987 Oct;6(5):484–488. [PubMed] [Google Scholar]
  37. Testa U., Kühn L., Petrini M., Quaranta M. T., Pelosi E., Peschle C. Differential regulation of iron regulatory element-binding protein(s) in cell extracts of activated lymphocytes versus monocytes-macrophages. J Biol Chem. 1991 Jul 25;266(21):13925–13930. [PubMed] [Google Scholar]
  38. Testa U., Petrini M., Quaranta M. T., Pelosi-Testa E., Mastroberardino G., Camagna A., Boccoli G., Sargiacomo M., Isacchi G., Cozzi A. Iron up-modulates the expression of transferrin receptors during monocyte-macrophage maturation. J Biol Chem. 1989 Aug 5;264(22):13181–13187. [PubMed] [Google Scholar]
  39. Torti S. V., Kwak E. L., Miller S. C., Miller L. L., Ringold G. M., Myambo K. B., Young A. P., Torti F. M. The molecular cloning and characterization of murine ferritin heavy chain, a tumor necrosis factor-inducible gene. J Biol Chem. 1988 Sep 5;263(25):12638–12644. [PubMed] [Google Scholar]
  40. Wei Y., Miller S. C., Tsuji Y., Torti S. V., Torti F. M. Interleukin 1 induces ferritin heavy chain in human muscle cells. Biochem Biophys Res Commun. 1990 May 31;169(1):289–296. doi: 10.1016/0006-291x(90)91466-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES