Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Mar;91(3):1011–1018. doi: 10.1172/JCI116257

Lipoprotein-proteoglycan complexes induce continued cholesteryl ester accumulation in foam cells from rabbit atherosclerotic lesions.

P Vijayagopal 1, S R Srinivasan 1, J H Xu 1, E R Dalferes Jr 1, B Radhakrishnamurthy 1, G S Berenson 1
PMCID: PMC288054  PMID: 8450030

Abstract

We studied the metabolism of lipoprotein-proteoglycan complexes by macrophage-derived foam cells. Foam cells were isolated from atherosclerotic rabbit aortas. ApoB-lipoprotein-proteoglycan complex was isolated from human aorta fibrous plaque lesions and LDL-proteoglycan complex was formed in vitro. Both in vitro and in vivo complexes stimulated cholesteryl ester synthesis in foam cells by a dose-dependent, saturable process that resulted in the intracellular accumulation of cholesteryl ester. Stimulation of cholesteryl ester synthesis was linear with time over a 32-h period. Polyinosinic acid inhibited the stimulation of cholesteryl ester synthesis by the complexes by 32-37%, whereas cytochalasin D only produced a 6-16% inhibition. Foam cells degraded 125I-LDL-proteoglycan complex and 125I-acetyl LDL in a saturable, dose-dependent manner. Excess unlabeled acetyl-LDL inhibited the degradation of 125I-LDL-proteoglycan complex by 52%, while LDL had no effect. Similarly, excess unlabeled complex suppressed the degradation of 125I-acetyl-LDL by 48%. Foam cells degraded 125I-methyl-LDL-proteoglycan complex to the same extent as 125I-LDL-proteoglycan complex. These results show that foam cells from atherosclerotic lesions metabolize lipoprotein-proteoglycan complexes predominantly via receptor-mediated endocytosis and consequently continue to accumulate intracellular cholesteryl ester.

Full text

PDF
1011

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aqel N. M., Ball R. Y., Waldmann H., Mitchinson M. J. Monocytic origin of foam cells in human atherosclerotic plaques. Atherosclerosis. 1984 Dec;53(3):265–271. doi: 10.1016/0021-9150(84)90127-8. [DOI] [PubMed] [Google Scholar]
  2. BOWMAN R. E., WOLF R. C. A rapid and specific ultramicro method for total serum cholesterol. Clin Chem. 1962 May-Jun;8:302–309. [PubMed] [Google Scholar]
  3. Basu S. K., Brown M. S., Ho Y. K., Goldstein J. L. Degradation of low density lipoprotein . dextran sulfate complexes associated with deposition of cholesteryl esters in mouse macrophages. J Biol Chem. 1979 Aug 10;254(15):7141–7146. [PubMed] [Google Scholar]
  4. Björnheden T., Bondjers G. Oxygen consumption in aortic tissue from rabbits with diet-induced atherosclerosis. Arteriosclerosis. 1987 May-Jun;7(3):238–247. doi: 10.1161/01.atv.7.3.238. [DOI] [PubMed] [Google Scholar]
  5. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  6. Clevidence B. A., Morton R. E., West G., Dusek D. M., Hoff H. F. Cholesterol esterification in macrophages. Stimulation by lipoproteins containing apo B isolated from human aortas. Arteriosclerosis. 1984 May-Jun;4(3):196–207. doi: 10.1161/01.atv.4.3.196. [DOI] [PubMed] [Google Scholar]
  7. Faggiotto A., Ross R., Harker L. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis. 1984 Jul-Aug;4(4):323–340. doi: 10.1161/01.atv.4.4.323. [DOI] [PubMed] [Google Scholar]
  8. Falcone D. J., Salisbury B. G. Fibronectin stimulates macrophage uptake of low density lipoprotein-heparin-collagen complexes. Arteriosclerosis. 1988 May-Jun;8(3):263–273. doi: 10.1161/01.atv.8.3.263. [DOI] [PubMed] [Google Scholar]
  9. Fogelman A. M., Shechter I., Seager J., Hokom M., Child J. S., Edwards P. A. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2214–2218. doi: 10.1073/pnas.77.4.2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fowler S., Shio H., Haley N. J. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations. Lab Invest. 1979 Oct;41(4):372–378. [PubMed] [Google Scholar]
  11. Gerrity R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981 May;103(2):181–190. [PMC free article] [PubMed] [Google Scholar]
  12. Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979 Jan;76(1):333–337. doi: 10.1073/pnas.76.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldstein J. L., Hoff H. F., Ho Y. K., Basu S. K., Brown M. S. Stimulation of cholesteryl ester synthesis in macrophages by extracts of atherosclerotic human aortas and complexes of albumin/cholesteryl esters. Arteriosclerosis. 1981 May-Jun;1(3):210–226. doi: 10.1161/01.atv.1.3.210. [DOI] [PubMed] [Google Scholar]
  14. Gown A. M., Tsukada T., Ross R. Human atherosclerosis. II. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol. 1986 Oct;125(1):191–207. [PMC free article] [PubMed] [Google Scholar]
  15. Gudewicz P. W., Molnar J., Lai M. Z., Beezhold D. W., Siefring G. E., Jr, Credo R. B., Lorand L. Fibronectin-mediated uptake of gelatin-coated latex particles by peritoneal macrophages. J Cell Biol. 1980 Nov;87(2 Pt 1):427–433. doi: 10.1083/jcb.87.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haley N. J., Shio H., Fowler S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. I. Resolution of aortic cell populations by metrizamide density gradient centrifugation. Lab Invest. 1977 Sep;37(3):287–296. [PubMed] [Google Scholar]
  17. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  18. Hoff H. F., Clevidence B. A. Uptake by mouse peritoneal macrophages of large cholesteryl ester-rich particles isolated from human atherosclerotic lesions. Exp Mol Pathol. 1987 Jun;46(3):331–344. doi: 10.1016/0014-4800(87)90054-2. [DOI] [PubMed] [Google Scholar]
  19. Hurt E., Bondjers G., Camejo G. Interaction of LDL with human arterial proteoglycans stimulates its uptake by human monocyte-derived macrophages. J Lipid Res. 1990 Mar;31(3):443–454. [PubMed] [Google Scholar]
  20. Hurt E., Camejo G. Effect of arterial proteoglycans on the interaction of LDL with human monocyte-derived macrophages. Atherosclerosis. 1987 Oct;67(2-3):115–126. doi: 10.1016/0021-9150(87)90272-3. [DOI] [PubMed] [Google Scholar]
  21. Jaakkola O., Ylä-Herttuala S., Särkioja T., Nikkari T. Macrophage foam cells from human aortic fatty streaks take up beta-VLDL and acetylated LDL in primary culture. Atherosclerosis. 1989 Oct;79(2-3):173–182. doi: 10.1016/0021-9150(89)90122-6. [DOI] [PubMed] [Google Scholar]
  22. Khoo J. C., Miller E., McLoughlin P., Steinberg D. Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis. 1988 Jul-Aug;8(4):348–358. doi: 10.1161/01.atv.8.4.348. [DOI] [PubMed] [Google Scholar]
  23. Koo C., Wernette-Hammond M. E., Garcia Z., Malloy M. J., Uauy R., East C., Bilheimer D. W., Mahley R. W., Innerarity T. L. Uptake of cholesterol-rich remnant lipoproteins by human monocyte-derived macrophages is mediated by low density lipoprotein receptors. J Clin Invest. 1988 May;81(5):1332–1340. doi: 10.1172/JCI113460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mahley R. W., Innerarity T. L., Pitas R. E., Weisgraber K. H., Brown J. H., Gross E. Inhibition of lipoprotein binding to cell surface receptors of fibroblasts following selective modification of arginyl residues in arginine-rich and B apoproteins. J Biol Chem. 1977 Oct 25;252(20):7279–7287. [PubMed] [Google Scholar]
  25. Mawhinney T. P., Augustyn J. M., Fritz K. E. Glycosaminoglycan-lipoprotein complexes from aortas of hypercholesterolemic rabbits. Part 1. Isolation and characterization. Atherosclerosis. 1978 Oct;31(2):155–167. doi: 10.1016/0021-9150(78)90161-2. [DOI] [PubMed] [Google Scholar]
  26. Morton R. E., West G. A., Hoff H. F. A low density lipoprotein-sized particle isolated from human atherosclerotic lesions is internalized by macrophages via a non-scavenger-receptor mechanism. J Lipid Res. 1986 Nov;27(11):1124–1134. [PubMed] [Google Scholar]
  27. Parthasarathy S., Printz D. J., Boyd D., Joy L., Steinberg D. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis. 1986 Sep-Oct;6(5):505–510. doi: 10.1161/01.atv.6.5.505. [DOI] [PubMed] [Google Scholar]
  28. Pitas R. E., Innerarity T. L., Mahley R. W. Foam cells in explants of atherosclerotic rabbit aortas have receptors for beta-very low density lipoproteins and modified low density lipoproteins. Arteriosclerosis. 1983 Jan-Feb;3(1):2–12. doi: 10.1161/01.atv.3.1.2. [DOI] [PubMed] [Google Scholar]
  29. Rosenfeld M. E., Khoo J. C., Miller E., Parthasarathy S., Palinski W., Witztum J. L. Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts. J Clin Invest. 1991 Jan;87(1):90–99. doi: 10.1172/JCI115006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Salisbury B. G., Falcone D. J., Minick C. R. Insoluble low-density lipoprotein-proteoglycan complexes enhance cholesteryl ester accumulation in macrophages. Am J Pathol. 1985 Jul;120(1):6–11. [PMC free article] [PubMed] [Google Scholar]
  31. Sparrow C. P., Parthasarathy S., Steinberg D. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J Biol Chem. 1989 Feb 15;264(5):2599–2604. [PubMed] [Google Scholar]
  32. Srinivasan S. R., Radhakrishnamurthy B., Pargaonkar P. S., Berenson G. S., Dolan P. Lipoprotein-acid mucopolysaccharide complexes of human atherosclerotic lesions. Biochim Biophys Acta. 1975 Apr 18;388(1):58–70. doi: 10.1016/0005-2760(75)90062-4. [DOI] [PubMed] [Google Scholar]
  33. Tsukada T., Rosenfeld M., Ross R., Gown A. M. Immunocytochemical analysis of cellular components in atherosclerotic lesions. Use of monoclonal antibodies with the Watanabe and fat-fed rabbit. Arteriosclerosis. 1986 Nov-Dec;6(6):601–613. doi: 10.1161/01.atv.6.6.601. [DOI] [PubMed] [Google Scholar]
  34. Vijayagopal P., Srinivasan S. R., Jones K. M., Radhakrishnamurthy B., Berenson G. S. Complexes of low-density lipoproteins and arterial proteoglycan aggregates promote cholesteryl ester accumulation in mouse macrophages. Biochim Biophys Acta. 1985 Dec 4;837(3):251–261. doi: 10.1016/0005-2760(85)90048-7. [DOI] [PubMed] [Google Scholar]
  35. Vijayagopal P., Srinivasan S. R., Radhakrishnamurthy B., Berenson G. S. Interaction of serum lipoproteins and a proteoglycan from bovine aorta. J Biol Chem. 1981 Aug 10;256(15):8234–8241. [PubMed] [Google Scholar]
  36. Vijayagopal P., Srinivasan S. R., Radhakrishnamurthy B., Berenson G. S. Lipoprotein-proteoglycan complexes from atherosclerotic lesions promote cholesteryl ester accumulation in human monocytes/macrophages. Arterioscler Thromb. 1992 Feb;12(2):237–249. doi: 10.1161/01.atv.12.2.237. [DOI] [PubMed] [Google Scholar]
  37. Vijayagopal P., Srinivasan S. R., Radhakrishnamurthy B., Berenson G. S. Studies on the mechanism of uptake of low density lipoprotein-proteoglycan complex in macrophages. Biochim Biophys Acta. 1991 May 17;1092(3):291–297. doi: 10.1016/s0167-4889(97)90003-3. [DOI] [PubMed] [Google Scholar]
  38. Weisgraber K. H., Innerarity T. L., Mahley R. W. Role of lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem. 1978 Dec 25;253(24):9053–9062. [PubMed] [Google Scholar]
  39. Weisgraber K. H., Innerarity T. L., Mahley R. W. Role of lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem. 1978 Dec 25;253(24):9053–9062. [PubMed] [Google Scholar]
  40. Ylä-Herttuala S., Jaakkola O., Solakivi T., Kuivaniemi H., Nikkari T. The effect of proteoglycans, collagen and lysyl oxidase on the metabolism of low density lipoprotein by macrophages. Atherosclerosis. 1986 Oct;62(1):73–80. doi: 10.1016/0021-9150(86)90021-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES