Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Mar;91(3):1035–1043. doi: 10.1172/JCI116260

Recombinant C1 inhibitor P5/P3 variants display resistance to catalytic inactivation by stimulated neutrophils.

E Eldering 1, C C Huijbregts 1, J H Nuijens 1, A J Verhoeven 1, C E Hack 1
PMCID: PMC288057  PMID: 8450033

Abstract

Proteolytic inactivation of serine protease inhibitors (serpins) by neutrophil elastase (HNE) is presumed to contribute to the deregulation of plasma cascade systems in septic shock. Here, we report a supplementary approach to construct serpins, in our case C1 inhibitor, that are resistant to catalytic inactivation by HNE. Instead of shifting the specificity of alpha 1-antitrypsin towards the proteases of the contact activation and complement systems, we attempted to obtain a C1 inhibitor species which resists proteolytic inactivation by HNE. 12 recombinant C1 inhibitor variants were produced with mainly conservative substitutions at the cleavage sites for HNE, 440-Ile and/or 442-Val. Three variants significantly resisted proteolytic inactivation, both by purified HNE, as well as by activated neutrophils. The increase in functional half-life in the presence of FMLP-stimulated cells was found to be 18-fold for the 440-Leu/442-Ala variant. Inhibitory function of these variants was relatively unimpaired, as examined by the formation of stable complexes with C1s, beta-Factor XIIa, kallikrein, and plasmin, and as determined by kinetic analysis. The calculated association rate constants (k(on)) were reduced twofold at most for C1s, and appeared unaffected for beta-Factor XIIa. The effect on the k(on) with kallikrein was more pronounced, ranging from a significant ninefold reduction to an unmodified rate. The results show that the reactive centre loop of C1 inhibitor can be modified towards decreased sensitivity for nontarget proteases without loss of specificity for target proteases. We conclude that this approach extends the possibilities of applying recombinant serpin variants for therapeutic use in inflammatory diseases.

Full text

PDF
1035

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baici A., Seemüller U. Kinetics of the inhibition of human leucocyte elastase by eglin from the leech Hirudo medicinalis. Biochem J. 1984 Mar 15;218(3):829–833. doi: 10.1042/bj2180829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bode W., Meyer E., Jr, Powers J. C. Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry. 1989 Mar 7;28(5):1951–1963. doi: 10.1021/bi00431a001. [DOI] [PubMed] [Google Scholar]
  3. Brower M. S., Harpel P. C. Proteolytic cleavage and inactivation of alpha 2-plasmin inhibitor and C1 inactivator by human polymorphonuclear leukocyte elastase. J Biol Chem. 1982 Aug 25;257(16):9849–9854. [PubMed] [Google Scholar]
  4. Carrell R. W., Evans D. L., Stein P. E. Mobile reactive centre of serpins and the control of thrombosis. Nature. 1991 Oct 10;353(6344):576–578. doi: 10.1038/353576a0. [DOI] [PubMed] [Google Scholar]
  5. Carrell R. W., Owen M. C. Plakalbumin, alpha 1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature. 1985 Oct 24;317(6039):730–732. doi: 10.1038/317730a0. [DOI] [PubMed] [Google Scholar]
  6. Carrell R. W. alpha 1-Antitrypsin: molecular pathology, leukocytes, and tissue damage. J Clin Invest. 1986 Dec;78(6):1427–1431. doi: 10.1172/JCI112731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang N. S., Boackle R. J., Leu R. W. Characterization of C1 inhibitor binding to neutrophils. Immunology. 1991 May;73(1):95–101. [PMC free article] [PubMed] [Google Scholar]
  8. Colman R. W., Flores D. N., De La Cadena R. A., Scott C. F., Cousens L., Barr P. J., Hoffman I. B., Kueppers F., Fisher D., Idell S. Recombinant alpha 1-antitrypsin Pittsburgh attenuates experimental gram-negative septicemia. Am J Pathol. 1988 Feb;130(2):418–426. [PMC free article] [PubMed] [Google Scholar]
  9. DONALDSON V. H., EVANS R. R. A BIOCHEMICAL ABNORMALITY IN HEREDIATRY ANGIONEUROTIC EDEMA: ABSENCE OF SERUM INHIBITOR OF C' 1-ESTERASE. Am J Med. 1963 Jul;35:37–44. doi: 10.1016/0002-9343(63)90162-1. [DOI] [PubMed] [Google Scholar]
  10. Davis A. E., 3rd C1 inhibitor and hereditary angioneurotic edema. Annu Rev Immunol. 1988;6:595–628. doi: 10.1146/annurev.iy.06.040188.003115. [DOI] [PubMed] [Google Scholar]
  11. Desrochers P. E., Jeffrey J. J., Weiss S. J. Interstitial collagenase (matrix metalloproteinase-1) expresses serpinase activity. J Clin Invest. 1991 Jun;87(6):2258–2265. doi: 10.1172/JCI115262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Desrochers P. E., Mookhtiar K., Van Wart H. E., Hasty K. A., Weiss S. J. Proteolytic inactivation of alpha 1-proteinase inhibitor and alpha 1-antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. J Biol Chem. 1992 Mar 5;267(7):5005–5012. [PubMed] [Google Scholar]
  13. Desrochers P. E., Weiss S. J. Proteolytic inactivation of alpha-1-proteinase inhibitor by a neutrophil metalloproteinase. J Clin Invest. 1988 May;81(5):1646–1650. doi: 10.1172/JCI113500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dewald B., Baggiolini M. Platelet-activating factor as a stimulus of exocytosis in human neutrophils. Biochim Biophys Acta. 1986 Aug 29;888(1):42–48. doi: 10.1016/0167-4889(86)90069-8. [DOI] [PubMed] [Google Scholar]
  15. Eldering E., Huijbregts C. C., Lubbers Y. T., Longstaff C., Hack C. E. Characterization of recombinant C1 inhibitor P1 variants. J Biol Chem. 1992 Apr 5;267(10):7013–7020. [PubMed] [Google Scholar]
  16. Eldering E., Nuijens J. H., Hack C. E. Expression of functional human C1 inhibitor in COS cells. J Biol Chem. 1988 Aug 25;263(24):11776–11779. [PubMed] [Google Scholar]
  17. Ellis J. A., Mayer S. J., Jones O. T. The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils. Biochem J. 1988 May 1;251(3):887–891. doi: 10.1042/bj2510887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. George P. M., Pemberton P., Bathurst I. C., Carrell R. W., Gibson H. L., Rosenberg S., Hallewell R. A., Barr P. J. Characterization of antithrombins produced by active site mutagenesis of human alpha 1-antitrypsin expressed in yeast. Blood. 1989 Feb;73(2):490–496. [PubMed] [Google Scholar]
  19. Hack C. E., Nuijens J. H., Felt-Bersma R. J., Schreuder W. O., Eerenberg-Belmer A. J., Paardekooper J., Bronsveld W., Thijs L. G. Elevated plasma levels of the anaphylatoxins C3a and C4a are associated with a fatal outcome in sepsis. Am J Med. 1989 Jan;86(1):20–26. doi: 10.1016/0002-9343(89)90224-6. [DOI] [PubMed] [Google Scholar]
  20. Harpel P. C., Cooper N. R. Studies on human plasma C1 inactivator-enzyme interactions. I. Mechanisms of interaction with C1s, plasmin, and trypsin. J Clin Invest. 1975 Mar;55(3):593–604. doi: 10.1172/JCI107967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Holmes W. E., Lijnen H. R., Collen D. Characterization of recombinant human alpha 2-antiplasmin and of mutants obtained by site-directed mutagenesis of the reactive site. Biochemistry. 1987 Aug 11;26(16):5133–5140. doi: 10.1021/bi00390a036. [DOI] [PubMed] [Google Scholar]
  22. Hortin G. L., Trimpe B. L. C1 inhibitor: different mechanisms of reaction with complement component C1 and C1s. Immunol Invest. 1991 Feb;20(1):75–82. doi: 10.3109/08820139109054926. [DOI] [PubMed] [Google Scholar]
  23. Jordan R. E., Kilpatrick J., Nelson R. M. Heparin promotes the inactivation of antithrombin by neutrophil elastase. Science. 1987 Aug 14;237(4816):777–779. doi: 10.1126/science.3649921. [DOI] [PubMed] [Google Scholar]
  24. Knäuper V., Reinke H., Tschesche H. Inactivation of human plasma alpha 1-proteinase inhibitor by human PMN leucocyte collagenase. FEBS Lett. 1990 Apr 24;263(2):355–357. doi: 10.1016/0014-5793(90)81412-h. [DOI] [PubMed] [Google Scholar]
  25. Knäuper V., Triebel S., Reinke H., Tschesche H. Inactivation of human plasma C1-inhibitor by human PMN leucocyte matrix metalloproteinases. FEBS Lett. 1991 Sep 23;290(1-2):99–102. doi: 10.1016/0014-5793(91)81235-z. [DOI] [PubMed] [Google Scholar]
  26. Kramer W., Drutsa V., Jansen H. W., Kramer B., Pflugfelder M., Fritz H. J. The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 1984 Dec 21;12(24):9441–9456. doi: 10.1093/nar/12.24.9441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lawrence D. A., Strandberg L., Ericson J., Ny T. Structure-function studies of the SERPIN plasminogen activator inhibitor type 1. Analysis of chimeric strained loop mutants. J Biol Chem. 1990 Nov 25;265(33):20293–20301. [PubMed] [Google Scholar]
  28. Lennick M., Brew S. A., Ingham K. C. Kinetics of interaction of C1 inhibitor with complement C1s. Biochemistry. 1986 Jul 1;25(13):3890–3898. doi: 10.1021/bi00361a023. [DOI] [PubMed] [Google Scholar]
  29. Mast A. E., Enghild J. J., Nagase H., Suzuki K., Pizzo S. V., Salvesen G. Kinetics and physiologic relevance of the inactivation of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, and antithrombin III by matrix metalloproteinases-1 (tissue collagenase), -2 (72-kDa gelatinase/type IV collagenase), and -3 (stromelysin). J Biol Chem. 1991 Aug 25;266(24):15810–15816. [PubMed] [Google Scholar]
  30. Morrison J. F., Walsh C. T. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301. doi: 10.1002/9780470123072.ch5. [DOI] [PubMed] [Google Scholar]
  31. Nakajima K., Powers J. C., Ashe B. M., Zimmerman M. Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. Studies with peptide substrates related to the alpha 1-protease inhibitor reactive site. J Biol Chem. 1979 May 25;254(10):4027–4032. [PubMed] [Google Scholar]
  32. Nuijens J. H., Eerenberg-Belmer A. J., Huijbregts C. C., Schreuder W. O., Felt-Bersma R. J., Abbink J. J., Thijs L. G., Hack C. E. Proteolytic inactivation of plasma C1- inhibitor in sepsis. J Clin Invest. 1989 Aug;84(2):443–450. doi: 10.1172/JCI114185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Patston P. A., Roodi N., Schifferli J. A., Bischoff R., Courtney M., Schapira M. Reactivity of alpha 1-antitrypsin mutants against proteolytic enzymes of the kallikrein-kinin, complement, and fibrinolytic systems. J Biol Chem. 1990 Jun 25;265(18):10786–10791. [PubMed] [Google Scholar]
  34. Pemberton P. A., Harrison R. A., Lachmann P. J., Carrell R. W. The structural basis for neutrophil inactivation of C1 inhibitor. Biochem J. 1989 Feb 15;258(1):193–198. doi: 10.1042/bj2580193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Perkins S. J., Smith K. F., Amatayakul S., Ashford D., Rademacher T. W., Dwek R. A., Lachmann P. J., Harrison R. A. Two-domain structure of the native and reactive centre cleaved forms of C1 inhibitor of human complement by neutron scattering. J Mol Biol. 1990 Aug 5;214(3):751–763. doi: 10.1016/0022-2836(90)90290-3. [DOI] [PubMed] [Google Scholar]
  36. Pilatte Y., Hammer C. H., Frank M. M., Fries L. F. A new simplified procedure for C1 inhibitor purification. A novel use for jacalin-agarose. J Immunol Methods. 1989 Jun 2;120(1):37–43. doi: 10.1016/0022-1759(89)90286-x. [DOI] [PubMed] [Google Scholar]
  37. Pixley R. A., Schapira M., Colman R. W. The regulation of human factor XIIa by plasma proteinase inhibitors. J Biol Chem. 1985 Feb 10;260(3):1723–1729. [PubMed] [Google Scholar]
  38. Powers J. C., Gupton B. F., Harley A. D., Nishino N., Whitley R. J. Specificity of porcine pancreatic elastase, human leukocyte elastase and cathepsin G. Inhibition with peptide chloromethyl ketones. Biochim Biophys Acta. 1977 Nov 23;485(1):156–166. doi: 10.1016/0005-2744(77)90203-0. [DOI] [PubMed] [Google Scholar]
  39. Rao N. V., Wehner N. G., Marshall B. C., Gray W. R., Gray B. H., Hoidal J. R. Characterization of proteinase-3 (PR-3), a neutrophil serine proteinase. Structural and functional properties. J Biol Chem. 1991 May 25;266(15):9540–9548. [PubMed] [Google Scholar]
  40. Schapira M., Ramus M. A., Waeber B., Brunner H. R., Jallat S., Carvallo D., Roitsch C., Courtney M. Protection by recombinant alpha 1-antitrypsin Ala357 Arg358 against arterial hypotension induced by factor XII fragment. J Clin Invest. 1987 Aug;80(2):582–585. doi: 10.1172/JCI113108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schapira M., Scott C. F., Colman R. W. Protection of human plasma kallikrein from inactivation by C1 inhibitor and other protease inhibitors. The role of high molecular weight kininogen. Biochemistry. 1981 May 12;20(10):2738–2743. doi: 10.1021/bi00513a006. [DOI] [PubMed] [Google Scholar]
  42. Sim R. B., Arlaud G. J., Colomb M. G. Kinetics of reaction of human C1-inhibitor with the human complement system proteases C1r and C1s. Biochim Biophys Acta. 1980 Apr 11;612(2):433–449. doi: 10.1016/0005-2744(80)90126-6. [DOI] [PubMed] [Google Scholar]
  43. Sim R. B., Reboul A., Arlaud G. J., Villiers C. L., Colomb M. G. Interaction of 125I-labelled complement subcomponents C-1r and C-1s with protease inhibitors in plasma. FEBS Lett. 1979 Jan 1;97(1):111–115. doi: 10.1016/0014-5793(79)80063-0. [DOI] [PubMed] [Google Scholar]
  44. Skriver K., Wikoff W. R., Patston P. A., Tausk F., Schapira M., Kaplan A. P., Bock S. C. Substrate properties of C1 inhibitor Ma (alanine 434----glutamic acid). Genetic and structural evidence suggesting that the P12-region contains critical determinants of serine protease inhibitor/substrate status. J Biol Chem. 1991 May 15;266(14):9216–9221. [PubMed] [Google Scholar]
  45. Travis J., Salvesen G. S. Human plasma proteinase inhibitors. Annu Rev Biochem. 1983;52:655–709. doi: 10.1146/annurev.bi.52.070183.003255. [DOI] [PubMed] [Google Scholar]
  46. Verhoeven A. J., van Schaik M. L., Roos D., Weening R. S. Detection of carriers of the autosomal form of chronic granulomatous disease. Blood. 1988 Feb;71(2):505–507. [PubMed] [Google Scholar]
  47. Vissers M. C., George P. M., Bathurst I. C., Brennan S. O., Winterbourn C. C. Cleavage and inactivation of alpha 1-antitrypsin by metalloproteinases released from neutrophils. J Clin Invest. 1988 Aug;82(2):706–711. doi: 10.1172/JCI113651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weiss S. J. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb 9;320(6):365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
  49. Zimmerman M., Ashe B. M. Sbustrate specificity of the elastase and the chymotrypsin-like enzyme of the human granulocyte. Biochim Biophys Acta. 1977 Jan 11;480(1):241–245. doi: 10.1016/0005-2744(77)90337-0. [DOI] [PubMed] [Google Scholar]
  50. de Agostini A., Lijnen H. R., Pixley R. A., Colman R. W., Schapira M. Inactivation of factor XII active fragment in normal plasma. Predominant role of C-1-inhibitor. J Clin Invest. 1984 Jun;73(6):1542–1549. doi: 10.1172/JCI111360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. van der Graaf F., Koedam J. A., Griffin J. H., Bouma B. N. Interaction of human plasma kallikrein and its light chain with C1 inhibitor. Biochemistry. 1983 Sep 27;22(20):4860–4866. doi: 10.1021/bi00289a037. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES