Abstract
We used a dual-isotope method (oral [1-14C]glucose and intravenous [6-3H]glucose) to examine whether the oral glucose intolerance of cirrhosis is due to (a) a greater input of glucose into the systemic circulation (owing to a lower first-pass hepatic uptake of ingested glucose, or to impaired inhibition of hepatic glucose output), (b) a lower rate of glucose removal, or (c) a combination of these mechanisms. Indirect calorimetry was used to measure oxidative and nonoxidative metabolism. Basal plasma glucose levels (cirrhotics, 5.6 +/- 0.4[SE], controls, 5.1 +/- 0.2 mmol/liter), and rates of glucose appearance (Ra) and disappearance (Rd) were similar in the two groups. After 75 g of oral glucose, plasma glucose levels were higher in cirrhotics than controls, the curves diverging for 80 min despite markedly higher insulin levels in cirrhotics. During the first 20 min, there was very little change in glucose Rd and the greater initial increase in plasma glucose in cirrhotics resulted from a higher Ra of ingested [1-14C]glucose into the systemic circulation, suggesting a reduced first-pass hepatic uptake of portal venous glucose. The continuing divergence of the plasma glucose curves was due to a lower glucose Rd between 30 and 80 min (cirrhotics 236 +/- 17 mg/kg in 50 min, controls 280 +/- 17 mg/kg in 50 min, P < 0.05, one-tailed test). Glucose metabolic clearance rate rose more slowly in cirrhotics and was significantly lower than in controls during the first 2 h after glucose ingestion (2.24 +/- 0.17 vs 3.30 +/- 0.23 ml/kg per min, P < 0.005), in keeping with their known insulin insensitivity. Despite the higher initial glucose Ra in cirrhotics, during the entire 4-h period the quantity of total glucose and of ingested glucose (cirrhotics 54 +/- 2 g [72% of oral load], controls 54 +/- 3 g) appearing in the systemic circulation were similar. Overall glucose Rd (cirrhotics 72.5 +/- 3.8 g/4 h, controls 77.2 +/- 2.2 g/4h) and percent suppression of hepatic glucose output over 4 h (cirrhotics, 53 +/- 10%, controls 49 +/- 8%) were also similar. After glucose ingestion much of the extra glucose utilized was oxidized to provide energy that in the basal state was derived from lipid fuels. Glucose oxidation after glucose ingestion was similar in both groups and accounted for approximately two-thirds of glucose Rd. The reduction in overall nonoxidative glucose disposal did not reach significance (21 +/- 5 vs. 29 +/- 3 g/4 h, 0.05 < P < 0.1). Although our data would be compatible with an impairment of tissue glycogen deposition after oral glucose, glucose storage as glycogen probably plays a small part part in overall glucose disposal. Our results suggest that the higher glucose levels seen in cirrhotics after oral glucose are due initially to an increase in the amount of ingested glucose appearing in the systemic circulation, and subsequently to an impairment in glucose uptake by tissues due to insulin insensitivity. Impaired suppression of hepatic glucose output does not contribute to oral glucose intolerance.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDRES R., CADER G., ZIERLER K. L. The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state; measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin Invest. 1956 Jun;35(6):671–682. doi: 10.1172/JCI103324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abumrad N. N., Cherrington A. D., Williams P. E., Lacy W. W., Rabin D. Absorption and disposition of a glucose load in the conscious dog. Am J Physiol. 1982 Jun;242(6):E398–E406. doi: 10.1152/ajpendo.1982.242.6.E398. [DOI] [PubMed] [Google Scholar]
- Argoud G. M., Schade D. S., Eaton R. P. Underestimation of hepatic glucose production by radioactive and stable tracers. Am J Physiol. 1987 May;252(5 Pt 1):E606–E615. doi: 10.1152/ajpendo.1987.252.5.E606. [DOI] [PubMed] [Google Scholar]
- Assal J. P., Levrat R., Stauffacher W., Renold A. E. Metabolic consequences of portacaval shunting in the rat: effects on glucose tolerance and serum immunoreactive insulin response. Metabolism. 1971 Sep;20(9):850–858. doi: 10.1016/0026-0495(71)90047-3. [DOI] [PubMed] [Google Scholar]
- BLOOM B. The simultaneous determination of C14 and H3 in the terminal groups of glucose. Anal Biochem. 1962 Jan;3:85–87. doi: 10.1016/0003-2697(62)90048-9. [DOI] [PubMed] [Google Scholar]
- Bell P. M., Firth R. G., Rizza R. A. Assessment of insulin action in insulin-dependent diabetes mellitus using [6(14)C]glucose, [3(3)H]glucose, and [2(3)H]glucose. Differences in the apparent pattern of insulin resistance depending on the isotope used. J Clin Invest. 1986 Dec;78(6):1479–1486. doi: 10.1172/JCI112739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Björkman O., Eriksson L. S., Nyberg B., Wahren J. Gut exchange of glucose and lactate in basal state and after oral glucose ingestion in postoperative patients. Diabetes. 1990 Jun;39(6):747–751. doi: 10.2337/diab.39.6.747. [DOI] [PubMed] [Google Scholar]
- Chiasson J. L., Liljenquist J. E., Lacy W. W., Jennings A. S., Cherrington A. D. Gluconeogenesis: methodological approaches in vivo. Fed Proc. 1977 Feb;36(2):229–235. [PubMed] [Google Scholar]
- Cobelli C., Mari A., Ferrannini E. Non-steady state: error analysis of Steele's model and developments for glucose kinetics. Am J Physiol. 1987 May;252(5 Pt 1):E679–E689. doi: 10.1152/ajpendo.1987.252.5.E679. [DOI] [PubMed] [Google Scholar]
- Conn H. O., Schreiber W., Elkington S. G. Cirrhosis and diabetes. II. Association of impaired glucose tolerance with portal-systemic shunting in Laennec's cirrhosis. Am J Dig Dis. 1971 Mar;16(3):227–239. doi: 10.1007/BF02235244. [DOI] [PubMed] [Google Scholar]
- Duclos B., Bories P., Mathieu-Daude J. C., Michel H. Jejunal permeability to water and electrolytes in patients with chronic intrahepatic hypertension: evidence for a role of aldosterone. Gut. 1991 Jun;32(6):640–644. doi: 10.1136/gut.32.6.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felig P., Wahren J., Hendler R. Influence of oral glucose ingestion on splanchnic glucose and gluconeogenic substrate metabolism in man. Diabetes. 1975 May;24(5):468–475. doi: 10.2337/diab.24.5.468. [DOI] [PubMed] [Google Scholar]
- Ferrannini E., Bjorkman O., Reichard G. A., Jr, Pilo A., Olsson M., Wahren J., DeFronzo R. A. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes. 1985 Jun;34(6):580–588. doi: 10.2337/diab.34.6.580. [DOI] [PubMed] [Google Scholar]
- Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988 Mar;37(3):287–301. doi: 10.1016/0026-0495(88)90110-2. [DOI] [PubMed] [Google Scholar]
- Finegood D. T., Bergman R. N., Vranic M. Modeling error and apparent isotope discrimination confound estimation of endogenous glucose production during euglycemic glucose clamps. Diabetes. 1988 Aug;37(8):1025–1034. doi: 10.2337/diab.37.8.1025. [DOI] [PubMed] [Google Scholar]
- Firth R. G., Bell P. M., Marsh H. M., Hansen I., Rizza R. A. Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus. Role of hepatic and extrahepatic tissues. J Clin Invest. 1986 May;77(5):1525–1532. doi: 10.1172/JCI112467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frayn K. N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):628–634. doi: 10.1152/jappl.1983.55.2.628. [DOI] [PubMed] [Google Scholar]
- Gottesman I., Mandarino L., Gerich J. Use of glucose uptake and glucose clearance for the evaluation of insulin action in vivo. Diabetes. 1984 Feb;33(2):184–191. doi: 10.2337/diab.33.2.184. [DOI] [PubMed] [Google Scholar]
- Holdsworth C. D., Nye L., King E. The effect of portacaval anastomosis on oral carbohydrate tolerance and on plasma insulin levels. Gut. 1972 Jan;13(1):58–63. doi: 10.1136/gut.13.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson R. A., Roshania R. D., Hawa M. I., Sim B. M., DiSilvio L. Impact of glucose ingestion on hepatic and peripheral glucose metabolism in man: an analysis based on simultaneous use of the forearm and double isotope techniques. J Clin Endocrinol Metab. 1986 Sep;63(3):541–549. doi: 10.1210/jcem-63-3-541. [DOI] [PubMed] [Google Scholar]
- Katz L. D., Glickman M. G., Rapoport S., Ferrannini E., DeFronzo R. A. Splanchnic and peripheral disposal of oral glucose in man. Diabetes. 1983 Jul;32(7):675–679. doi: 10.2337/diab.32.7.675. [DOI] [PubMed] [Google Scholar]
- Kelley D., Mitrakou A., Marsh H., Schwenk F., Benn J., Sonnenberg G., Arcangeli M., Aoki T., Sorensen J., Berger M. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest. 1988 May;81(5):1563–1571. doi: 10.1172/JCI113489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kruszynska Y. T., Home P. D., McIntyre N. Relationship between insulin sensitivity, insulin secretion and glucose tolerance in cirrhosis. Hepatology. 1991 Jul;14(1):103–111. doi: 10.1002/hep.1840140117. [DOI] [PubMed] [Google Scholar]
- Kruszynska Y., Williams N., Perry M., Home P. The relationship between insulin sensitivity and skeletal muscle enzyme activities in hepatic cirrhosis. Hepatology. 1988 Nov-Dec;8(6):1615–1619. doi: 10.1002/hep.1840080624. [DOI] [PubMed] [Google Scholar]
- Leatherdale B. A., Chase R. A., Rogers J., Alberti K. G., Davies P., Record C. O. Forearm glucose uptake in cirrhosis and its relationship to glucose tolerance. Clin Sci (Lond) 1980 Sep;59(3):191–198. doi: 10.1042/cs0590191. [DOI] [PubMed] [Google Scholar]
- Lloyd B., Burrin J., Smythe P., Alberti K. G. Enzymic fluorometric continuous-flow assays for blood glucose, lactate, pyruvate, alanine, glycerol, and 3-hydroxybutyrate. Clin Chem. 1978 Oct;24(10):1724–1729. [PubMed] [Google Scholar]
- McIntyre N., Turner D. S., Holdsworth C. D. The role of the portal circulation in glucose and fructose tolerance. Diabetologia. 1970 Dec;6(6):593–596. doi: 10.1007/BF00418227. [DOI] [PubMed] [Google Scholar]
- Megyesi C., Samols E., Marks V. Glucose tolerance and diabetes in chronic liver disease. Lancet. 1967 Nov 18;2(7525):1051–1056. doi: 10.1016/s0140-6736(67)90334-0. [DOI] [PubMed] [Google Scholar]
- Merli M., Riggio O., Romiti A., Ariosto F., Mango L., Pinto G., Savioli M., Capocaccia L. Basal energy production rate and substrate use in stable cirrhotic patients. Hepatology. 1990 Jul;12(1):106–112. doi: 10.1002/hep.1840120117. [DOI] [PubMed] [Google Scholar]
- Mokuda O., Sakamoto Y., Ikeda T., Mashiba H. Direct inhibitory effect of high glucose in mesenteric artery on glucose absorption from isolated perfused rat intestine. Ann Nutr Metab. 1989;33(6):330–332. doi: 10.1159/000177554. [DOI] [PubMed] [Google Scholar]
- Mueckler M. Family of glucose-transporter genes. Implications for glucose homeostasis and diabetes. Diabetes. 1990 Jan;39(1):6–11. doi: 10.2337/diacare.39.1.6. [DOI] [PubMed] [Google Scholar]
- Neely R. D., Rooney D. P., Atkinson A. B., Sheridan B., Ennis C. N., Trimble E. R., Bell P. M. Underestimation of glucose turnover determined using [6-3H]glucose tracer in non-steady state. The role of a tritiated tracer impurity. Diabetologia. 1990 Nov;33(11):681–687. doi: 10.1007/BF00400570. [DOI] [PubMed] [Google Scholar]
- Niewoehner C. B., Nuttall F. Q. Relationship of hepatic glucose uptake to intrahepatic glucose concentration in fasted rats after glucose load. Diabetes. 1988 Nov;37(11):1559–1566. doi: 10.2337/diab.37.11.1559. [DOI] [PubMed] [Google Scholar]
- Owen O. E., Trapp V. E., Reichard G. A., Jr, Mozzoli M. A., Moctezuma J., Paul P., Skutches C. L., Boden G. Nature and quantity of fuels consumed in patients with alcoholic cirrhosis. J Clin Invest. 1983 Nov;72(5):1821–1832. doi: 10.1172/JCI111142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pehling G., Tessari P., Gerich J. E., Haymond M. W., Service F. J., Rizza R. A. Abnormal meal carbohydrate disposition in insulin-dependent diabetes. Relative contributions of endogenous glucose production and initial splanchnic uptake and effect of intensive insulin therapy. J Clin Invest. 1984 Sep;74(3):985–991. doi: 10.1172/JCI111519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez G., Trimarco B., Ungaro B., Rengo F., Saccà L. Glucoregulatory response to insulin-induced hypoglycemia in Laennec's cirrhosis. J Clin Endocrinol Metab. 1978 May;46(5):778–783. doi: 10.1210/jcem-46-5-778. [DOI] [PubMed] [Google Scholar]
- Petrides A. S., DeFronzo R. A. Glucose and insulin metabolism in cirrhosis. J Hepatol. 1989 Jan;8(1):107–114. doi: 10.1016/0168-8278(89)90169-4. [DOI] [PubMed] [Google Scholar]
- Piniewska D. M., McCulloch A. J., Bramble M. G., Taylor R., Record C. O., Alberti K. G. Glucose turnover in compensated hepatic cirrhosis. Horm Metab Res. 1986 Dec;18(12):834–837. doi: 10.1055/s-2007-1012451. [DOI] [PubMed] [Google Scholar]
- Prager R., Wallace P., Olefsky J. M. In vivo kinetics of insulin action on peripheral glucose disposal and hepatic glucose output in normal and obese subjects. J Clin Invest. 1986 Aug;78(2):472–481. doi: 10.1172/JCI112599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Proietto J., Alford F. P., Dudley F. J. The mechanism of the carbohydrate intolerance of cirrhosis. J Clin Endocrinol Metab. 1980 Nov;51(5):1030–1036. doi: 10.1210/jcem-51-5-1030. [DOI] [PubMed] [Google Scholar]
- RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
- Radziuk J., McDonald T. J., Rubenstein D., Dupre J. Initial splanchnic extraction of ingested glucose in normal man. Metabolism. 1978 Jun;27(6):657–669. doi: 10.1016/0026-0495(78)90003-3. [DOI] [PubMed] [Google Scholar]
- SCHAFFNER F., POPER H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963 Mar;44:239–242. [PubMed] [Google Scholar]
- STEELE R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959 Sep 25;82:420–430. doi: 10.1111/j.1749-6632.1959.tb44923.x. [DOI] [PubMed] [Google Scholar]
- Sherwin R. S., Kramer K. J., Tobin J. D., Insel P. A., Liljenquist J. E., Berman M., Andres R. A model of the kinetics of insulin in man. J Clin Invest. 1974 May;53(5):1481–1492. doi: 10.1172/JCI107697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith-Laing G., Sherlock S., Faber O. K. Effects of spontaneous portal-systemic shunting on insulin metabolism. Gastroenterology. 1979 Apr;76(4):685–690. [PubMed] [Google Scholar]
- Soeldner J. S., Slone D. Critical variables in the radioimmunoassay of serum insulin using the double antibody technic. Diabetes. 1965 Dec;14(12):771–779. doi: 10.2337/diab.14.12.771. [DOI] [PubMed] [Google Scholar]
- TALLEY R. B., SCHEDL H. P., CLIFTON J. A. SMALL INTESTINAL GLUCOSE, ELECTROLYTE, AND WATER ABSORPTION IN CIRRHOSIS. Gastroenterology. 1964 Oct;47:382–387. [PubMed] [Google Scholar]
- Taylor R., Heine R. J., Collins J., James O. F., Alberti K. G. Insulin action in cirrhosis. Hepatology. 1985 Jan-Feb;5(1):64–71. doi: 10.1002/hep.1840050115. [DOI] [PubMed] [Google Scholar]
- Vetter D., Fratte S., Winiszewski P., Reville M., Hirsch E., Roze F., Blickle J. F., Pinget M., Doffoel M., Bockel R. Conséquences de l'hyperglycémie sur le métabolisme glucidique et azoté dans la cirrhose. Exploration par une épreuve de clamp hyperglycémique. Gastroenterol Clin Biol. 1990;14(5):483–491. [PubMed] [Google Scholar]
- Waddell W. R., Sussman K. E. Plasma insulin after diversion of portal and pancreatic venous blood to vena cava. J Appl Physiol. 1967 Apr;22(4):808–812. doi: 10.1152/jappl.1967.22.4.808. [DOI] [PubMed] [Google Scholar]
- Yki-Järvinen H., Bogardus C., Foley J. E. Regulation of plasma lactate concentration in resting human subjects. Metabolism. 1990 Aug;39(8):859–864. doi: 10.1016/0026-0495(90)90133-w. [DOI] [PubMed] [Google Scholar]
- Yki-Järvinen H., Mott D., Young A. A., Stone K., Bogardus C. Regulation of glycogen synthase and phosphorylase activities by glucose and insulin in human skeletal muscle. J Clin Invest. 1987 Jul;80(1):95–100. doi: 10.1172/JCI113069. [DOI] [PMC free article] [PubMed] [Google Scholar]
