Abstract
The maximal hydrolytic activity of Na-K-ATPase is specifically increased in the cortical collecting duct (CCD) of rats with puromycin-induced nephrotic syndrome (NS). This stimulation is independent of aldosterone and of endogenous ouabain-like substance. To investigate the mechanism responsible for this change, we compared the maximal Na-K-ATPase hydrolytic activity, the ouabain sensitive 86Rb influx, the specific [3H]ouabain binding, and the sensitivity of Na-K-ATPase to ouabain in the CCD of control rats and of rats given an intraperitoneal injection of puromycin 7 d before study. Both Na-K-ATPase activity and ouabain-sensitive 86Rb influx increased two-fold in rats with NS (ATPase activity: 34.1 +/- 2.1 vs. 18.0 +/- 0.7 pmol.mm-1 x min-1 +/- SE, n = 6, P < 0.001; Rb influx: 14.4 +/- 0.7 vs. 7.4 +/- 0.4 peq.min-1 +/- SE, n = 6, P < 0.001) whereas specific [3H]ouabain binding decreased in rats with NS (6.9 +/- 0.7 vs. 9.0 +/- 0.6 fmol.mm-1 +/- SE, n = 6, P < 0.005). Therefore, the maximal turnover rate of Na-K-ATPase increased over twofold in rats with NS (5,053 +/- 361 vs. 2,043 +/- 124 cycles.min-1 +/- SE, n = 6, P < 0.001). Analysis of the curves of inhibition of Na-K-ATPase by ouabain showed the presence of two Na-K-ATPase populations in both control and NS rats: a highly sensitive population (apparent Ki: 1.4 x 10(-6) M and 0.9 x 10(-6) M) and a less sensitive moiety (apparent Ki: 2.6 x 10(-4) M and 1.1 x 10(-4) M). The enhancement of Na-K-ATPase activity observed in the CCD of rats with NS was entirely due to the stimulation of the population of Na-K-ATPase with low ouabain sensitivity. These results suggest that a dysregulation of this subclass of Na-K-ATPase might be the primary cause of sodium retention in this model of nephrotic syndrome.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arystarkhova E. A., Lakhtina O. E., Modyanov N. N. Immunodetection of Na,K-ATPase alpha 3-isoform in renal and nerve tissues. FEBS Lett. 1989 Jul 3;250(2):545–548. doi: 10.1016/0014-5793(89)80793-8. [DOI] [PubMed] [Google Scholar]
- Barlet-Bas C., Khadouri C., Marsy S., Doucet A. Enhanced intracellular sodium concentration in kidney cells recruits a latent pool of Na-K-ATPase whose size is modulated by corticosteroids. J Biol Chem. 1990 May 15;265(14):7799–7803. [PubMed] [Google Scholar]
- Bernard D. B., Alexander E. A., Couser W. G., Levinsky N. G. Renal sodium retention during volume expansion in experimental nephrotic syndrome. Kidney Int. 1978 Nov;14(5):478–485. doi: 10.1038/ki.1978.152. [DOI] [PubMed] [Google Scholar]
- Berrebi-Bertrand I., Maixent J. M., Christe G., Lelièvre L. G. Two active Na+/K+-ATPases of high affinity for ouabain in adult rat brain membranes. Biochim Biophys Acta. 1990 Jan 29;1021(2):148–156. doi: 10.1016/0005-2736(90)90027-l. [DOI] [PubMed] [Google Scholar]
- Cheval L., Doucet A. Measurement of Na-K-ATPase-mediated rubidium influx in single segments of rat nephron. Am J Physiol. 1990 Jul;259(1 Pt 2):F111–F121. doi: 10.1152/ajprenal.1990.259.1.F111. [DOI] [PubMed] [Google Scholar]
- Doucet A., Barlet C. Evidence for differences in the sensitivity to ouabain of NaK-ATPase along the nephrons of rabbit kidney. J Biol Chem. 1986 Jan 25;261(3):993–995. [PubMed] [Google Scholar]
- Doucet A., Katz A. I., Morel F. Determination of Na-K-ATPase activity in single segments of the mammalian nephron. Am J Physiol. 1979 Aug;237(2):F105–F113. doi: 10.1152/ajprenal.1979.237.2.F105. [DOI] [PubMed] [Google Scholar]
- El Mernissi G., Doucet A. Quantitation of [3H]ouabain binding and turnover of Na-K-ATPase along the rabbit nephron. Am J Physiol. 1984 Jul;247(1 Pt 2):F158–F167. doi: 10.1152/ajprenal.1984.247.1.F158. [DOI] [PubMed] [Google Scholar]
- FRENK S., ANTONOWICZ I., CRAIG J. M., METCOFF J. Experimental nephrotic syndrome induced in rats by aminonucleoside; renal lesions and body electrolyte composition. Proc Soc Exp Biol Med. 1955 Jul;89(3):424–427. doi: 10.3181/00379727-89-21833. [DOI] [PubMed] [Google Scholar]
- Farman N., Corthesy-Theulaz I., Bonvalet J. P., Rossier B. C. Localization of alpha-isoforms of Na(+)-K(+)-ATPase in rat kidney by in situ hybridization. Am J Physiol. 1991 Mar;260(3 Pt 1):C468–C474. doi: 10.1152/ajpcell.1991.260.3.C468. [DOI] [PubMed] [Google Scholar]
- Hamlyn J. M., Blaustein M. P., Bova S., DuCharme D. W., Harris D. W., Mandel F., Mathews W. R., Ludens J. H. Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6259–6263. doi: 10.1073/pnas.88.14.6259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horowitz B., Hensley C. B., Quintero M., Azuma K. K., Putnam D., McDonough A. A. Differential regulation of Na,K-ATPase alpha 1, alpha 2, and beta subunit mRNA and protein levels by thyroid hormone. J Biol Chem. 1990 Aug 25;265(24):14308–14314. [PubMed] [Google Scholar]
- Hsu Y. M., Guidotti G. Effects of hypokalemia on the properties and expression of the (Na+,K+)-ATPase of rat skeletal muscle. J Biol Chem. 1991 Jan 5;266(1):427–433. [PubMed] [Google Scholar]
- Imbert M., Chabardès D., Montégut M., Clique A., Morel F. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflugers Arch. 1975;354(3):213–228. doi: 10.1007/BF00584645. [DOI] [PubMed] [Google Scholar]
- Jørgensen P. L. Structure, function and regulation of Na,K-ATPase in the kidney. Kidney Int. 1986 Jan;29(1):10–20. doi: 10.1038/ki.1986.3. [DOI] [PubMed] [Google Scholar]
- Karlish S. J., Goldschleger R., Shahak Y., Rephaeli A. Charge transfer by the Na/K pump. Prog Clin Biol Res. 1988;268A:519–524. [PubMed] [Google Scholar]
- Lytton J. Insulin affects the sodium affinity of the rat adipocyte (Na+,K+)-ATPase. J Biol Chem. 1985 Aug 25;260(18):10075–10080. [PubMed] [Google Scholar]
- Lytton J., Lin J. C., Guidotti G. Identification of two molecular forms of (Na+,K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem. 1985 Jan 25;260(2):1177–1184. [PubMed] [Google Scholar]
- SKOU J. C. Preparation from mammallian brain and kidney of the enzyme system involved in active transport of Na ions and K ions. Biochim Biophys Acta. 1962 Apr 9;58:314–325. doi: 10.1016/0006-3002(62)91015-6. [DOI] [PubMed] [Google Scholar]
- Schultz S. G. Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by "flush-through". Am J Physiol. 1981 Dec;241(6):F579–F590. doi: 10.1152/ajprenal.1981.241.6.F579. [DOI] [PubMed] [Google Scholar]
- Sweadner K. J. Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta. 1989 May 9;988(2):185–220. doi: 10.1016/0304-4157(89)90019-1. [DOI] [PubMed] [Google Scholar]
- Sweadner K. J. Two molecular forms of (Na+ + K+)-stimulated ATPase in brain. Separation, and difference in affinity for strophanthidin. J Biol Chem. 1979 Jul 10;254(13):6060–6067. [PubMed] [Google Scholar]
- Urayama O., Shutt H., Sweadner K. J. Identification of three isozyme proteins of the catalytic subunit of the Na,K-ATPase in rat brain. J Biol Chem. 1989 May 15;264(14):8271–8280. [PubMed] [Google Scholar]
- Vogt B., Favre H. Na+,K(+)-ATPase activity and hormones in single nephron segments from nephrotic rats. Clin Sci (Lond) 1991 Jun;80(6):599–604. doi: 10.1042/cs0800599. [DOI] [PubMed] [Google Scholar]

