Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Apr;91(4):1721–1730. doi: 10.1172/JCI116382

Eosinophil cationic granule proteins impair thrombomodulin function. A potential mechanism for thromboembolism in hypereosinophilic heart disease.

A Slungaard 1, G M Vercellotti 1, T Tran 1, G J Gleich 1, N S Key 1
PMCID: PMC288152  PMID: 8386194

Abstract

Thromboembolism is a prominent but poorly understood feature of eosinophilic, or Loeffler's endocarditis. Eosinophil (EO) specific granule proteins, in particular major basic protein (MBP), accumulate on endocardial surfaces in the course of this disease. We hypothesized that these unusually cationic proteins promote thrombosis by binding to the anionic endothelial protein thrombomodulin (TM) and impairing its anticoagulant activities. We find that MBP potently (IC50 of 1-2 microM) inhibits the capacity of endothelial cell surface TM to generate the natural anticoagulant activated protein C (APC). MBP also inhibits APC generation by purified soluble rabbit TM with an IC50 of 100 nM without altering its apparent Kd for thrombin or Km for protein C. This inhibition is reversed by polyanions such as chondroitin sulfate E and heparin. A TM polypeptide fragment comprising the extracellular domain that includes its naturally occurring anionic glycosaminoglycan (GAG) moiety (TMD-105) is strongly inhibited by MBP, whereas its counterpart lacking the GAG moiety (TMD-75) is not. MBP also curtails the capacity of TMD-105 but not TMD-75 to prolong the thrombin clotting time. Thus, EO cationic proteins potently inhibit anticoagulant activities of the glycosylated form of TM, thereby suggesting a potential mechanism for thromboembolism in hypereosinophilic heart disease.

Full text

PDF
1721

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourin M. C., Boffa M. C., Björk I., Lindahl U. Functional domains of rabbit thrombomodulin. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5924–5928. doi: 10.1073/pnas.83.16.5924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourin M. C., Lundgren-Akerlund E., Lindahl U. Isolation and characterization of the glycosaminoglycan component of rabbit thrombomodulin proteoglycan. J Biol Chem. 1990 Sep 15;265(26):15424–15431. [PubMed] [Google Scholar]
  3. Bourin M. C., Ohlin A. K., Lane D. A., Stenflo J., Lindahl U. Relationship between anticoagulant activities and polyanionic properties of rabbit thrombomodulin. J Biol Chem. 1988 Jun 15;263(17):8044–8052. [PubMed] [Google Scholar]
  4. Conway E. M., Rosenberg R. D. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Mol Cell Biol. 1988 Dec;8(12):5588–5592. doi: 10.1128/mcb.8.12.5588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dittman W. A., Kumada T., Sadler J. E., Majerus P. W. The structure and function of mouse thrombomodulin. Phorbol myristate acetate stimulates degradation and synthesis of thrombomodulin without affecting mRNA levels in hemangioma cells. J Biol Chem. 1988 Oct 25;263(30):15815–15822. [PubMed] [Google Scholar]
  6. Dittman W. A., Majerus P. W. Structure and function of thrombomodulin: a natural anticoagulant. Blood. 1990 Jan 15;75(2):329–336. [PubMed] [Google Scholar]
  7. Esmon C. T., Owen W. G. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2249–2252. doi: 10.1073/pnas.78.4.2249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Esmon C. T. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989 Mar 25;264(9):4743–4746. [PubMed] [Google Scholar]
  9. Fauci A. S., Harley J. B., Roberts W. C., Ferrans V. J., Gralnick H. R., Bjornson B. H. NIH conference. The idiopathic hypereosinophilic syndrome. Clinical, pathophysiologic, and therapeutic considerations. Ann Intern Med. 1982 Jul;97(1):78–92. doi: 10.7326/0003-4819-97-1-78. [DOI] [PubMed] [Google Scholar]
  10. Gleich G. J., Adolphson C. R. The eosinophilic leukocyte: structure and function. Adv Immunol. 1986;39:177–253. doi: 10.1016/s0065-2776(08)60351-x. [DOI] [PubMed] [Google Scholar]
  11. Gleich G. J., Loegering D. A., Kueppers F., Bajaj S. P., Mann K. G. Physiochemical and biological properties of the major basic protein from guinea pig eosinophil granules. J Exp Med. 1974 Aug 1;140(2):313–332. doi: 10.1084/jem.140.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gleich G. J., Loegering D. A., Mann K. G., Maldonado J. E. Comparative properties of the Charcot-Leyden crystal protein and the major basic protein from human eosinophils. J Clin Invest. 1976 Mar;57(3):633–640. doi: 10.1172/JCI108319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Habermann E. Bee and wasp venoms. Science. 1972 Jul 28;177(4046):314–322. doi: 10.1126/science.177.4046.314. [DOI] [PubMed] [Google Scholar]
  14. Hayashi T., Zushi M., Yamamoto S., Suzuki K. Further localization of binding sites for thrombin and protein C in human thrombomodulin. J Biol Chem. 1990 Nov 25;265(33):20156–20159. [PubMed] [Google Scholar]
  15. Koyama T., Parkinson J. F., Aoki N., Bang N. U., Müller-Berghaus G., Preissner K. T. Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. Br J Haematol. 1991 Aug;78(4):515–522. doi: 10.1111/j.1365-2141.1991.tb04481.x. [DOI] [PubMed] [Google Scholar]
  16. Kurosawa S., Aoki N. Preparation of thrombomodulin from human placenta. Thromb Res. 1985 Feb 1;37(3):353–364. doi: 10.1016/0049-3848(85)90064-7. [DOI] [PubMed] [Google Scholar]
  17. Kurosawa S., Galvin J. B., Esmon N. L., Esmon C. T. Proteolytic formation and properties of functional domains of thrombomodulin. J Biol Chem. 1987 Feb 15;262(5):2206–2212. [PubMed] [Google Scholar]
  18. Larkin J. M., Donzell W. C., Anderson R. G. Modulation of intracellular potassium and ATP: effects on coated pit function in fibroblasts and hepatocytes. J Cell Physiol. 1985 Sep;124(3):372–378. doi: 10.1002/jcp.1041240303. [DOI] [PubMed] [Google Scholar]
  19. Leatherbarrow R. J. Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci. 1990 Dec;15(12):455–458. doi: 10.1016/0968-0004(90)90295-m. [DOI] [PubMed] [Google Scholar]
  20. Maione T. E., Gray G. S., Petro J., Hunt A. J., Donner A. L., Bauer S. I., Carson H. F., Sharpe R. J. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science. 1990 Jan 5;247(4938):77–79. doi: 10.1126/science.1688470. [DOI] [PubMed] [Google Scholar]
  21. Maruyama I., Bell C. E., Majerus P. W. Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. J Cell Biol. 1985 Aug;101(2):363–371. doi: 10.1083/jcb.101.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moore K. L., Esmon C. T., Esmon N. L. Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells in culture. Blood. 1989 Jan;73(1):159–165. [PubMed] [Google Scholar]
  23. Nawa K., Sakano K., Fujiwara H., Sato Y., Sugiyama N., Teruuchi T., Iwamoto M., Marumoto Y. Presence and function of chondroitin-4-sulfate on recombinant human soluble thrombomodulin. Biochem Biophys Res Commun. 1990 Sep 14;171(2):729–737. doi: 10.1016/0006-291x(90)91207-9. [DOI] [PubMed] [Google Scholar]
  24. Nawroth P. P., Stern D. M. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med. 1986 Mar 1;163(3):740–745. doi: 10.1084/jem.163.3.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oakley C. M., Olsen G. J. Eosinophilia and heart disease. Br Heart J. 1977 Mar;39(3):233–237. doi: 10.1136/hrt.39.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parkinson J. F., Garcia J. G., Bang N. U. Decreased thrombin affinity of cell-surface thrombomodulin following treatment of cultured endothelial cells with beta-D-xyloside. Biochem Biophys Res Commun. 1990 May 31;169(1):177–183. doi: 10.1016/0006-291x(90)91451-w. [DOI] [PubMed] [Google Scholar]
  27. Parkinson J. F., Grinnell B. W., Moore R. E., Hoskins J., Vlahos C. J., Bang N. U. Stable expression of a secretable deletion mutant of recombinant human thrombomodulin in mammalian cells. J Biol Chem. 1990 Jul 25;265(21):12602–12610. [PubMed] [Google Scholar]
  28. Parkinson J. F., Vlahos C. J., Yan S. C., Bang N. U. Recombinant human thrombomodulin. Regulation of cofactor activity and anticoagulant function by a glycosaminoglycan side chain. Biochem J. 1992 Apr 1;283(Pt 1):151–157. doi: 10.1042/bj2830151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Parrillo J. E., Borer J. S., Henry W. L., Wolff S. M., Fauci A. S. The cardiovascular manifestations of the hypereosinophilic syndrome. Prospective study of 26 patients, with review of the literature. Am J Med. 1979 Oct;67(4):572–582. doi: 10.1016/0002-9343(79)90227-4. [DOI] [PubMed] [Google Scholar]
  30. Peters M. S., Schroeter A. L., Kephart G. M., Gleich G. J. Localization of eosinophil granule major basic protein in chronic urticaria. J Invest Dermatol. 1983 Jul;81(1):39–43. doi: 10.1111/1523-1747.ep12538380. [DOI] [PubMed] [Google Scholar]
  31. Preissner K. T., Delvos U., Müller-Berghaus G. Binding of thrombin to thrombomodulin accelerates inhibition of the enzyme by antithrombin III. Evidence for a heparin-independent mechanism. Biochemistry. 1987 May 5;26(9):2521–2528. doi: 10.1021/bi00383a018. [DOI] [PubMed] [Google Scholar]
  32. Preissner K. T., Koyama T., Müller D., Tschopp J., Müller-Berghaus G. Domain structure of the endothelial cell receptor thrombomodulin as deduced from modulation of its anticoagulant functions. Evidence for a glycosaminoglycan-dependent secondary binding site for thrombin. J Biol Chem. 1990 Mar 25;265(9):4915–4922. [PubMed] [Google Scholar]
  33. Rohrbach M. S., Wheatley C. L., Slifman N. R., Gleich G. J. Activation of platelets by eosinophil granule proteins. J Exp Med. 1990 Oct 1;172(4):1271–1274. doi: 10.1084/jem.172.4.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Scuderi P., Sterling K. E., Lam K. S., Finley P. R., Ryan K. J., Ray C. G., Petersen E., Slymen D. J., Salmon S. E. Raised serum levels of tumour necrosis factor in parasitic infections. Lancet. 1986 Dec 13;2(8520):1364–1365. doi: 10.1016/s0140-6736(86)92007-6. [DOI] [PubMed] [Google Scholar]
  35. Slifman N. R., Loegering D. A., McKean D. J., Gleich G. J. Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol. 1986 Nov 1;137(9):2913–2917. [PubMed] [Google Scholar]
  36. Slungaard A., Ascensao J., Zanjani E., Jacob H. S. Pulmonary carcinoma with eosinophilia. Demonstration of a tumor-derived eosinophilopoietic factor. N Engl J Med. 1983 Sep 29;309(13):778–781. doi: 10.1056/NEJM198309293091307. [DOI] [PubMed] [Google Scholar]
  37. Slungaard A., Mahoney J. R., Jr Bromide-dependent toxicity of eosinophil peroxidase for endothelium and isolated working rat hearts: a model for eosinophilic endocarditis. J Exp Med. 1991 Jan 1;173(1):117–126. doi: 10.1084/jem.173.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Slungaard A., Vercellotti G. M., Walker G., Nelson R. D., Jacob H. S. Tumor necrosis factor alpha/cachectin stimulates eosinophil oxidant production and toxicity towards human endothelium. J Exp Med. 1990 Jun 1;171(6):2025–2041. doi: 10.1084/jem.171.6.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spry C. J., Tai P. C. Studies on blood eosinophils. II. Patients with Löffler's cardiomyopathy. Clin Exp Immunol. 1976 Jun;24(3):423–434. [PMC free article] [PubMed] [Google Scholar]
  40. Suzuki K., Hayashi T., Nishioka J., Kosaka Y., Zushi M., Honda G., Yamamoto S. A domain composed of epidermal growth factor-like structures of human thrombomodulin is essential for thrombin binding and for protein C activation. J Biol Chem. 1989 Mar 25;264(9):4872–4876. [PubMed] [Google Scholar]
  41. Tai P. C., Ackerman S. J., Spry C. J., Dunnette S., Olsen E. G., Gleich G. J. Deposits of eosinophil granule proteins in cardiac tissues of patients with eosinophilic endomyocardial disease. Lancet. 1987 Mar 21;1(8534):643–647. doi: 10.1016/s0140-6736(87)90412-0. [DOI] [PubMed] [Google Scholar]
  42. Taylor S., Folkman J. Protamine is an inhibitor of angiogenesis. Nature. 1982 May 27;297(5864):307–312. doi: 10.1038/297307a0. [DOI] [PubMed] [Google Scholar]
  43. Ten R. M., Pease L. R., McKean D. J., Bell M. P., Gleich G. J. Molecular cloning of the human eosinophil peroxidase. Evidence for the existence of a peroxidase multigene family. J Exp Med. 1989 May 1;169(5):1757–1769. doi: 10.1084/jem.169.5.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Venge P., Dahl R., Hällgren R. Enhancement of factor XII dependent reactions by eosinophil cationic protein. Thromb Res. 1979;14(4-5):641–649. doi: 10.1016/0049-3848(79)90119-1. [DOI] [PubMed] [Google Scholar]
  45. Wasmoen T. L., Bell M. P., Loegering D. A., Gleich G. J., Prendergast F. G., McKean D. J. Biochemical and amino acid sequence analysis of human eosinophil granule major basic protein. J Biol Chem. 1988 Sep 5;263(25):12559–12563. [PubMed] [Google Scholar]
  46. Wassom D. L., Loegering D. A., Solley G. O., Moore S. B., Schooley R. T., Fauci A. S., Gleich G. J. Elevated serum levels of the eosinophil granule major basic protein in patients with eosinophilia. J Clin Invest. 1981 Mar;67(3):651–661. doi: 10.1172/JCI110080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wassom D. L., Loegering D. A., Solley G. O., Moore S. B., Schooley R. T., Fauci A. S., Gleich G. J. Elevated serum levels of the eosinophil granule major basic protein in patients with eosinophilia. J Clin Invest. 1981 Mar;67(3):651–661. doi: 10.1172/JCI110080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ye J., Esmon N. L., Esmon C. T., Johnson A. E. The active site of thrombin is altered upon binding to thrombomodulin. Two distinct structural changes are detected by fluorescence, but only one correlates with protein C activation. J Biol Chem. 1991 Dec 5;266(34):23016–23021. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES